Metamath Proof Explorer


Theorem prsrn

Description: Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B = Base K
ordtNEW.l ˙ = K B × B
Assertion prsrn K Proset ran ˙ = B

Proof

Step Hyp Ref Expression
1 ordtNEW.b B = Base K
2 ordtNEW.l ˙ = K B × B
3 2 rneqi ran ˙ = ran K B × B
4 3 eleq2i x ran ˙ x ran K B × B
5 vex x V
6 5 elrn2 x ran K B × B y y x K B × B
7 eqid K = K
8 1 7 prsref K Proset x B x K x
9 df-br x K x x x K
10 8 9 sylib K Proset x B x x K
11 simpr K Proset x B x B
12 11 11 opelxpd K Proset x B x x B × B
13 10 12 elind K Proset x B x x K B × B
14 opeq1 y = x y x = x x
15 14 eleq1d y = x y x K B × B x x K B × B
16 5 15 spcev x x K B × B y y x K B × B
17 13 16 syl K Proset x B y y x K B × B
18 17 ex K Proset x B y y x K B × B
19 elinel2 y x K B × B y x B × B
20 opelxp2 y x B × B x B
21 19 20 syl y x K B × B x B
22 21 exlimiv y y x K B × B x B
23 18 22 impbid1 K Proset x B y y x K B × B
24 6 23 bitr4id K Proset x ran K B × B x B
25 4 24 syl5bb K Proset x ran ˙ x B
26 25 eqrdv K Proset ran ˙ = B