Metamath Proof Explorer


Theorem prsss

Description: Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018)

Ref Expression
Hypotheses ordtNEW.b B = Base K
ordtNEW.l ˙ = K B × B
Assertion prsss K Proset A B ˙ A × A = K A × A

Proof

Step Hyp Ref Expression
1 ordtNEW.b B = Base K
2 ordtNEW.l ˙ = K B × B
3 2 ineq1i ˙ A × A = K B × B A × A
4 inass K B × B A × A = K B × B A × A
5 3 4 eqtri ˙ A × A = K B × B A × A
6 xpss12 A B A B A × A B × B
7 6 anidms A B A × A B × B
8 sseqin2 A × A B × B B × B A × A = A × A
9 7 8 sylib A B B × B A × A = A × A
10 9 ineq2d A B K B × B A × A = K A × A
11 5 10 syl5eq A B ˙ A × A = K A × A
12 11 adantl K Proset A B ˙ A × A = K A × A