Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Topology
Order topology - misc. additions
prsss
Next ⟩
prsssdm
Metamath Proof Explorer
Ascii
Unicode
Theorem
prsss
Description:
Relation of a subproset.
(Contributed by
Thierry Arnoux
, 13-Sep-2018)
Ref
Expression
Hypotheses
ordtNEW.b
⊢
B
=
Base
K
ordtNEW.l
⊢
≤
˙
=
≤
K
∩
B
×
B
Assertion
prsss
⊢
K
∈
Proset
∧
A
⊆
B
→
≤
˙
∩
A
×
A
=
≤
K
∩
A
×
A
Proof
Step
Hyp
Ref
Expression
1
ordtNEW.b
⊢
B
=
Base
K
2
ordtNEW.l
⊢
≤
˙
=
≤
K
∩
B
×
B
3
2
ineq1i
⊢
≤
˙
∩
A
×
A
=
≤
K
∩
B
×
B
∩
A
×
A
4
inass
⊢
≤
K
∩
B
×
B
∩
A
×
A
=
≤
K
∩
B
×
B
∩
A
×
A
5
3
4
eqtri
⊢
≤
˙
∩
A
×
A
=
≤
K
∩
B
×
B
∩
A
×
A
6
xpss12
⊢
A
⊆
B
∧
A
⊆
B
→
A
×
A
⊆
B
×
B
7
6
anidms
⊢
A
⊆
B
→
A
×
A
⊆
B
×
B
8
sseqin2
⊢
A
×
A
⊆
B
×
B
↔
B
×
B
∩
A
×
A
=
A
×
A
9
7
8
sylib
⊢
A
⊆
B
→
B
×
B
∩
A
×
A
=
A
×
A
10
9
ineq2d
⊢
A
⊆
B
→
≤
K
∩
B
×
B
∩
A
×
A
=
≤
K
∩
A
×
A
11
5
10
syl5eq
⊢
A
⊆
B
→
≤
˙
∩
A
×
A
=
≤
K
∩
A
×
A
12
11
adantl
⊢
K
∈
Proset
∧
A
⊆
B
→
≤
˙
∩
A
×
A
=
≤
K
∩
A
×
A