Metamath Proof Explorer


Theorem prstchom2

Description: Hom-sets of the constructed category are dependent on the preorder.

Note that prstchom.x and prstchom.y are redundant here due to our definition of ProsetToCat ( see prstchom2ALT ). However, this should not be assumed as it is definition-dependent. Therefore, the two hypotheses are added for explicitness. (Contributed by Zhi Wang, 21-Sep-2024)

Ref Expression
Hypotheses prstcnid.c φ C = ProsetToCat K
prstcnid.k φ K Proset
prstchom.l φ ˙ = C
prstchom.e φ H = Hom C
prstchom.x φ X Base C
prstchom.y φ Y Base C
Assertion prstchom2 φ X ˙ Y ∃! f f X H Y

Proof

Step Hyp Ref Expression
1 prstcnid.c φ C = ProsetToCat K
2 prstcnid.k φ K Proset
3 prstchom.l φ ˙ = C
4 prstchom.e φ H = Hom C
5 prstchom.x φ X Base C
6 prstchom.y φ Y Base C
7 1 2 3 4 5 6 prstchom φ X ˙ Y X H Y
8 1 2 prstcthin φ C ThinCat
9 eqidd φ Base C = Base C
10 8 5 6 9 4 thincn0eu φ X H Y ∃! f f X H Y
11 7 10 bitrd φ X ˙ Y ∃! f f X H Y