Metamath Proof Explorer


Theorem prstcnidlem

Description: Lemma for prstcnid and prstchomval . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
prstcnid.k φKProset
prstcnid.e E=SlotEndx
prstcnid.no Endxcompndx
Assertion prstcnidlem φEC=EKsSetHomndxK×1𝑜

Proof

Step Hyp Ref Expression
1 prstcnid.c Could not format ( ph -> C = ( ProsetToCat ` K ) ) : No typesetting found for |- ( ph -> C = ( ProsetToCat ` K ) ) with typecode |-
2 prstcnid.k φKProset
3 prstcnid.e E=SlotEndx
4 prstcnid.no Endxcompndx
5 1 2 prstcval φC=KsSetHomndxK×1𝑜sSetcompndx
6 5 fveq2d φEC=EKsSetHomndxK×1𝑜sSetcompndx
7 3 4 setsnid EKsSetHomndxK×1𝑜=EKsSetHomndxK×1𝑜sSetcompndx
8 6 7 eqtr4di φEC=EKsSetHomndxK×1𝑜