Metamath Proof Explorer


Theorem prstcthin

Description: The preordered set is equipped with a thin category. (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Hypotheses prstcnid.c φ C = ProsetToCat K
prstcnid.k φ K Proset
Assertion prstcthin φ C ThinCat

Proof

Step Hyp Ref Expression
1 prstcnid.c φ C = ProsetToCat K
2 prstcnid.k φ K Proset
3 eqidd φ Base C = Base C
4 eqidd φ C = C
5 1 2 4 prstchomval φ C × 1 𝑜 = Hom C
6 ovex K sSet Hom ndx K × 1 𝑜 V
7 0ex V
8 ccoid comp = Slot comp ndx
9 8 setsid K sSet Hom ndx K × 1 𝑜 V V = comp K sSet Hom ndx K × 1 𝑜 sSet comp ndx
10 6 7 9 mp2an = comp K sSet Hom ndx K × 1 𝑜 sSet comp ndx
11 1 2 prstcval φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
12 11 fveq2d φ comp C = comp K sSet Hom ndx K × 1 𝑜 sSet comp ndx
13 10 12 eqtr4id φ = comp C
14 1 2 prstcprs φ C Proset
15 3 5 13 4 14 prsthinc φ C ThinCat Id C = y Base C
16 15 simpld φ C ThinCat