Metamath Proof Explorer


Theorem prstcval

Description: Lemma for prstcnidlem and prstcthin . (Contributed by Zhi Wang, 20-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses prstcnid.c φ C = ProsetToCat K
prstcnid.k φ K Proset
Assertion prstcval φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx

Proof

Step Hyp Ref Expression
1 prstcnid.c φ C = ProsetToCat K
2 prstcnid.k φ K Proset
3 id k = K k = K
4 fveq2 k = K k = K
5 4 xpeq1d k = K k × 1 𝑜 = K × 1 𝑜
6 5 opeq2d k = K Hom ndx k × 1 𝑜 = Hom ndx K × 1 𝑜
7 3 6 oveq12d k = K k sSet Hom ndx k × 1 𝑜 = K sSet Hom ndx K × 1 𝑜
8 7 oveq1d k = K k sSet Hom ndx k × 1 𝑜 sSet comp ndx = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
9 df-prstc ProsetToCat = k Proset k sSet Hom ndx k × 1 𝑜 sSet comp ndx
10 ovex K sSet Hom ndx K × 1 𝑜 sSet comp ndx V
11 8 9 10 fvmpt K Proset ProsetToCat K = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
12 2 11 syl φ ProsetToCat K = K sSet Hom ndx K × 1 𝑜 sSet comp ndx
13 1 12 eqtrd φ C = K sSet Hom ndx K × 1 𝑜 sSet comp ndx