| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indthinc.b |
|
| 2 |
|
prsthinc.h |
|
| 3 |
|
prsthinc.o |
|
| 4 |
|
prsthinc.l |
|
| 5 |
|
prsthinc.p |
|
| 6 |
|
eqidd |
|
| 7 |
6
|
f1omo |
|
| 8 |
|
df-ov |
|
| 9 |
8
|
eleq2i |
|
| 10 |
9
|
mobii |
|
| 11 |
7 10
|
sylibr |
|
| 12 |
|
biid |
|
| 13 |
|
0lt1o |
|
| 14 |
1
|
eleq2d |
|
| 15 |
|
eqid |
|
| 16 |
|
eqid |
|
| 17 |
15 16
|
prsref |
|
| 18 |
5 17
|
sylan |
|
| 19 |
14 18
|
sylbida |
|
| 20 |
4
|
breqd |
|
| 21 |
20
|
biimpar |
|
| 22 |
19 21
|
syldan |
|
| 23 |
|
eqidd |
|
| 24 |
|
1oex |
|
| 25 |
24
|
a1i |
|
| 26 |
|
1n0 |
|
| 27 |
26
|
a1i |
|
| 28 |
23 25 27
|
fvconstr |
|
| 29 |
22 28
|
mpbid |
|
| 30 |
13 29
|
eleqtrrid |
|
| 31 |
|
0ov |
|
| 32 |
31
|
oveqi |
|
| 33 |
|
0ov |
|
| 34 |
32 33
|
eqtri |
|
| 35 |
34 13
|
eqeltri |
|
| 36 |
|
simpl |
|
| 37 |
5
|
adantr |
|
| 38 |
1
|
eleq2d |
|
| 39 |
1
|
eleq2d |
|
| 40 |
38 14 39
|
3anbi123d |
|
| 41 |
40
|
biimpa |
|
| 42 |
41
|
adantrr |
|
| 43 |
|
eqidd |
|
| 44 |
|
simprrl |
|
| 45 |
43 44
|
fvconstr2 |
|
| 46 |
4
|
breqd |
|
| 47 |
46
|
biimpd |
|
| 48 |
36 45 47
|
sylc |
|
| 49 |
|
simprrr |
|
| 50 |
43 49
|
fvconstr2 |
|
| 51 |
4
|
breqd |
|
| 52 |
51
|
biimpd |
|
| 53 |
36 50 52
|
sylc |
|
| 54 |
15 16
|
prstr |
|
| 55 |
37 42 48 53 54
|
syl112anc |
|
| 56 |
4
|
breqd |
|
| 57 |
56
|
biimprd |
|
| 58 |
36 55 57
|
sylc |
|
| 59 |
24
|
a1i |
|
| 60 |
26
|
a1i |
|
| 61 |
43 59 60
|
fvconstr |
|
| 62 |
58 61
|
mpbid |
|
| 63 |
35 62
|
eleqtrrid |
|
| 64 |
1 2 11 3 5 12 30 63
|
isthincd2 |
|