Metamath Proof Explorer


Theorem prstr

Description: "Less than or equal to" is transitive in a proset. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses isprs.b B = Base K
isprs.l ˙ = K
Assertion prstr K Proset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z

Proof

Step Hyp Ref Expression
1 isprs.b B = Base K
2 isprs.l ˙ = K
3 1 2 prslem K Proset X B Y B Z B X ˙ X X ˙ Y Y ˙ Z X ˙ Z
4 3 simprd K Proset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z
5 4 3impia K Proset X B Y B Z B X ˙ Y Y ˙ Z X ˙ Z