Metamath Proof Explorer


Theorem prub

Description: A positive fraction not in a positive real is an upper bound. Remark (1) of Gleason p. 122. (Contributed by NM, 25-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion prub A 𝑷 B A C 𝑸 ¬ C A B < 𝑸 C

Proof

Step Hyp Ref Expression
1 eleq1 B = C B A C A
2 1 biimpcd B A B = C C A
3 2 adantl A 𝑷 B A B = C C A
4 prcdnq A 𝑷 B A C < 𝑸 B C A
5 3 4 jaod A 𝑷 B A B = C C < 𝑸 B C A
6 5 con3d A 𝑷 B A ¬ C A ¬ B = C C < 𝑸 B
7 6 adantr A 𝑷 B A C 𝑸 ¬ C A ¬ B = C C < 𝑸 B
8 elprnq A 𝑷 B A B 𝑸
9 ltsonq < 𝑸 Or 𝑸
10 sotric < 𝑸 Or 𝑸 B 𝑸 C 𝑸 B < 𝑸 C ¬ B = C C < 𝑸 B
11 9 10 mpan B 𝑸 C 𝑸 B < 𝑸 C ¬ B = C C < 𝑸 B
12 8 11 sylan A 𝑷 B A C 𝑸 B < 𝑸 C ¬ B = C C < 𝑸 B
13 7 12 sylibrd A 𝑷 B A C 𝑸 ¬ C A B < 𝑸 C