Metamath Proof Explorer


Theorem prunioo

Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion prunioo A * B * A B A B A B = A B

Proof

Step Hyp Ref Expression
1 simp3 A * B * A B A B
2 xrleloe A * B * A B A < B A = B
3 2 3adant3 A * B * A B A B A < B A = B
4 df-pr A B = A B
5 4 uneq2i A B A B = A B A B
6 unass A B A B = A B A B
7 5 6 eqtr4i A B A B = A B A B
8 uncom A B A = A A B
9 snunioo A * B * A < B A A B = A B
10 8 9 eqtrid A * B * A < B A B A = A B
11 10 uneq1d A * B * A < B A B A B = A B B
12 7 11 eqtrid A * B * A < B A B A B = A B B
13 12 3expa A * B * A < B A B A B = A B B
14 13 3adantl3 A * B * A B A < B A B A B = A B B
15 snunico A * B * A B A B B = A B
16 15 adantr A * B * A B A < B A B B = A B
17 14 16 eqtrd A * B * A B A < B A B A B = A B
18 17 ex A * B * A B A < B A B A B = A B
19 iccid A * A A = A
20 19 3ad2ant1 A * B * A B A A = A
21 20 eqcomd A * B * A B A = A A
22 uncom A = A
23 un0 A = A
24 22 23 eqtri A = A
25 iooid A A =
26 oveq2 A = B A A = A B
27 25 26 eqtr3id A = B = A B
28 dfsn2 A = A A
29 preq2 A = B A A = A B
30 28 29 eqtrid A = B A = A B
31 27 30 uneq12d A = B A = A B A B
32 24 31 eqtr3id A = B A = A B A B
33 oveq2 A = B A A = A B
34 32 33 eqeq12d A = B A = A A A B A B = A B
35 21 34 syl5ibcom A * B * A B A = B A B A B = A B
36 18 35 jaod A * B * A B A < B A = B A B A B = A B
37 3 36 sylbid A * B * A B A B A B A B = A B
38 1 37 mpd A * B * A B A B A B = A B