Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | prunioo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 | |
|
2 | xrleloe | |
|
3 | 2 | 3adant3 | |
4 | df-pr | |
|
5 | 4 | uneq2i | |
6 | unass | |
|
7 | 5 6 | eqtr4i | |
8 | uncom | |
|
9 | snunioo | |
|
10 | 8 9 | eqtrid | |
11 | 10 | uneq1d | |
12 | 7 11 | eqtrid | |
13 | 12 | 3expa | |
14 | 13 | 3adantl3 | |
15 | snunico | |
|
16 | 15 | adantr | |
17 | 14 16 | eqtrd | |
18 | 17 | ex | |
19 | iccid | |
|
20 | 19 | 3ad2ant1 | |
21 | 20 | eqcomd | |
22 | uncom | |
|
23 | un0 | |
|
24 | 22 23 | eqtri | |
25 | iooid | |
|
26 | oveq2 | |
|
27 | 25 26 | eqtr3id | |
28 | dfsn2 | |
|
29 | preq2 | |
|
30 | 28 29 | eqtrid | |
31 | 27 30 | uneq12d | |
32 | 24 31 | eqtr3id | |
33 | oveq2 | |
|
34 | 32 33 | eqeq12d | |
35 | 21 34 | syl5ibcom | |
36 | 18 35 | jaod | |
37 | 3 36 | sylbid | |
38 | 1 37 | mpd | |