Metamath Proof Explorer


Theorem prunioo

Description: The closure of an open real interval. (Contributed by Paul Chapman, 15-Mar-2008) (Proof shortened by Mario Carneiro, 16-Jun-2014)

Ref Expression
Assertion prunioo A*B*ABABAB=AB

Proof

Step Hyp Ref Expression
1 simp3 A*B*ABAB
2 xrleloe A*B*ABA<BA=B
3 2 3adant3 A*B*ABABA<BA=B
4 df-pr AB=AB
5 4 uneq2i ABAB=ABAB
6 unass ABAB=ABAB
7 5 6 eqtr4i ABAB=ABAB
8 uncom ABA=AAB
9 snunioo A*B*A<BAAB=AB
10 8 9 eqtrid A*B*A<BABA=AB
11 10 uneq1d A*B*A<BABAB=ABB
12 7 11 eqtrid A*B*A<BABAB=ABB
13 12 3expa A*B*A<BABAB=ABB
14 13 3adantl3 A*B*ABA<BABAB=ABB
15 snunico A*B*ABABB=AB
16 15 adantr A*B*ABA<BABB=AB
17 14 16 eqtrd A*B*ABA<BABAB=AB
18 17 ex A*B*ABA<BABAB=AB
19 iccid A*AA=A
20 19 3ad2ant1 A*B*ABAA=A
21 20 eqcomd A*B*ABA=AA
22 uncom A=A
23 un0 A=A
24 22 23 eqtri A=A
25 iooid AA=
26 oveq2 A=BAA=AB
27 25 26 eqtr3id A=B=AB
28 dfsn2 A=AA
29 preq2 A=BAA=AB
30 28 29 eqtrid A=BA=AB
31 27 30 uneq12d A=BA=ABAB
32 24 31 eqtr3id A=BA=ABAB
33 oveq2 A=BAA=AB
34 32 33 eqeq12d A=BA=AAABAB=AB
35 21 34 syl5ibcom A*B*ABA=BABAB=AB
36 18 35 jaod A*B*ABA<BA=BABAB=AB
37 3 36 sylbid A*B*ABABABAB=AB
38 1 37 mpd A*B*ABABAB=AB