Metamath Proof Explorer


Theorem psd1

Description: The derivative of one is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psd1.s S = I mPwSer R
psd1.u 1 ˙ = 1 S
psd1.z 0 ˙ = 0 S
psd1.i φ I V
psd1.r φ R CRing
psd1.x φ X I
Assertion psd1 φ I mPSDer R X 1 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 psd1.s S = I mPwSer R
2 psd1.u 1 ˙ = 1 S
3 psd1.z 0 ˙ = 0 S
4 psd1.i φ I V
5 psd1.r φ R CRing
6 psd1.x φ X I
7 eqid Base S = Base S
8 eqid + S = + S
9 eqid S = S
10 1 4 5 psrcrng φ S CRing
11 10 crngringd φ S Ring
12 7 2 ringidcl S Ring 1 ˙ Base S
13 11 12 syl φ 1 ˙ Base S
14 1 7 8 9 4 5 6 13 13 psdmul φ I mPSDer R X 1 ˙ S 1 ˙ = I mPSDer R X 1 ˙ S 1 ˙ + S 1 ˙ S I mPSDer R X 1 ˙
15 7 9 2 11 13 ringlidmd φ 1 ˙ S 1 ˙ = 1 ˙
16 15 fveq2d φ I mPSDer R X 1 ˙ S 1 ˙ = I mPSDer R X 1 ˙
17 5 crnggrpd φ R Grp
18 17 grpmgmd φ R Mgm
19 1 7 4 18 6 13 psdcl φ I mPSDer R X 1 ˙ Base S
20 7 9 2 11 19 ringridmd φ I mPSDer R X 1 ˙ S 1 ˙ = I mPSDer R X 1 ˙
21 7 9 2 11 19 ringlidmd φ 1 ˙ S I mPSDer R X 1 ˙ = I mPSDer R X 1 ˙
22 20 21 oveq12d φ I mPSDer R X 1 ˙ S 1 ˙ + S 1 ˙ S I mPSDer R X 1 ˙ = I mPSDer R X 1 ˙ + S I mPSDer R X 1 ˙
23 14 16 22 3eqtr3rd φ I mPSDer R X 1 ˙ + S I mPSDer R X 1 ˙ = I mPSDer R X 1 ˙
24 10 crnggrpd φ S Grp
25 7 8 3 grpid S Grp I mPSDer R X 1 ˙ Base S I mPSDer R X 1 ˙ + S I mPSDer R X 1 ˙ = I mPSDer R X 1 ˙ 0 ˙ = I mPSDer R X 1 ˙
26 24 19 25 syl2anc φ I mPSDer R X 1 ˙ + S I mPSDer R X 1 ˙ = I mPSDer R X 1 ˙ 0 ˙ = I mPSDer R X 1 ˙
27 23 26 mpbid φ 0 ˙ = I mPSDer R X 1 ˙
28 27 eqcomd φ I mPSDer R X 1 ˙ = 0 ˙