Metamath Proof Explorer


Theorem psdascl

Description: The derivative of a constant polynomial is zero. (Contributed by SN, 25-Apr-2025)

Ref Expression
Hypotheses psdascl.s S = I mPwSer R
psdascl.z 0 ˙ = 0 S
psdascl.a A = algSc S
psdascl.b B = Base R
psdascl.i φ I V
psdascl.r φ R CRing
psdascl.x φ X I
psdascl.c φ C B
Assertion psdascl φ I mPSDer R X A C = 0 ˙

Proof

Step Hyp Ref Expression
1 psdascl.s S = I mPwSer R
2 psdascl.z 0 ˙ = 0 S
3 psdascl.a A = algSc S
4 psdascl.b B = Base R
5 psdascl.i φ I V
6 psdascl.r φ R CRing
7 psdascl.x φ X I
8 psdascl.c φ C B
9 1 5 6 psrsca φ R = Scalar S
10 9 fveq2d φ Base R = Base Scalar S
11 4 10 eqtrid φ B = Base Scalar S
12 8 11 eleqtrd φ C Base Scalar S
13 eqid Scalar S = Scalar S
14 eqid Base Scalar S = Base Scalar S
15 eqid S = S
16 eqid 1 S = 1 S
17 3 13 14 15 16 asclval C Base Scalar S A C = C S 1 S
18 12 17 syl φ A C = C S 1 S
19 18 fveq2d φ I mPSDer R X A C = I mPSDer R X C S 1 S
20 eqid Base S = Base S
21 6 crngringd φ R Ring
22 1 5 21 psrring φ S Ring
23 20 16 ringidcl S Ring 1 S Base S
24 22 23 syl φ 1 S Base S
25 1 20 15 4 5 6 7 24 8 psdvsca φ I mPSDer R X C S 1 S = C S I mPSDer R X 1 S
26 1 16 2 5 6 7 psd1 φ I mPSDer R X 1 S = 0 ˙
27 26 oveq2d φ C S I mPSDer R X 1 S = C S 0 ˙
28 1 5 21 psrlmod φ S LMod
29 13 15 14 2 lmodvs0 S LMod C Base Scalar S C S 0 ˙ = 0 ˙
30 28 12 29 syl2anc φ C S 0 ˙ = 0 ˙
31 27 30 eqtrd φ C S I mPSDer R X 1 S = 0 ˙
32 19 25 31 3eqtrd φ I mPSDer R X A C = 0 ˙