Metamath Proof Explorer


Theorem psdcoef

Description: Coefficient of a term of the derivative of a power series. (Contributed by SN, 12-Apr-2025)

Ref Expression
Hypotheses psdffval.s S = I mPwSer R
psdffval.b B = Base S
psdffval.d D = h 0 I | h -1 Fin
psdffval.i φ I V
psdffval.r φ R W
psdfval.x φ X I
psdval.f φ F B
psdcoef.k φ K D
Assertion psdcoef φ I mPSDer R X F K = K X + 1 R F K + f y I if y = X 1 0

Proof

Step Hyp Ref Expression
1 psdffval.s S = I mPwSer R
2 psdffval.b B = Base S
3 psdffval.d D = h 0 I | h -1 Fin
4 psdffval.i φ I V
5 psdffval.r φ R W
6 psdfval.x φ X I
7 psdval.f φ F B
8 psdcoef.k φ K D
9 1 2 3 4 5 6 7 psdval φ I mPSDer R X F = k D k X + 1 R F k + f y I if y = X 1 0
10 fveq1 k = K k X = K X
11 10 oveq1d k = K k X + 1 = K X + 1
12 fvoveq1 k = K F k + f y I if y = X 1 0 = F K + f y I if y = X 1 0
13 11 12 oveq12d k = K k X + 1 R F k + f y I if y = X 1 0 = K X + 1 R F K + f y I if y = X 1 0
14 13 adantl φ k = K k X + 1 R F k + f y I if y = X 1 0 = K X + 1 R F K + f y I if y = X 1 0
15 ovexd φ K X + 1 R F K + f y I if y = X 1 0 V
16 9 14 8 15 fvmptd φ I mPSDer R X F K = K X + 1 R F K + f y I if y = X 1 0