Metamath Proof Explorer


Theorem psdffval

Description: Value of the power series differentiation operation. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdffval.s S = I mPwSer R
psdffval.b B = Base S
psdffval.d D = h 0 I | h -1 Fin
psdffval.i φ I V
psdffval.r φ R W
Assertion psdffval φ I mPSDer R = x I f B k D k x + 1 R f k + f y I if y = x 1 0

Proof

Step Hyp Ref Expression
1 psdffval.s S = I mPwSer R
2 psdffval.b B = Base S
3 psdffval.d D = h 0 I | h -1 Fin
4 psdffval.i φ I V
5 psdffval.r φ R W
6 df-psd mPSDer = i V , r V x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
7 6 a1i φ mPSDer = i V , r V x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0
8 simpl i = I r = R i = I
9 oveq12 i = I r = R i mPwSer r = I mPwSer R
10 9 1 eqtr4di i = I r = R i mPwSer r = S
11 10 fveq2d i = I r = R Base i mPwSer r = Base S
12 11 2 eqtr4di i = I r = R Base i mPwSer r = B
13 8 oveq2d i = I r = R 0 i = 0 I
14 13 rabeqdv i = I r = R h 0 i | h -1 Fin = h 0 I | h -1 Fin
15 14 3 eqtr4di i = I r = R h 0 i | h -1 Fin = D
16 fveq2 r = R r = R
17 16 adantl i = I r = R r = R
18 eqidd i = I r = R k x + 1 = k x + 1
19 8 mpteq1d i = I r = R y i if y = x 1 0 = y I if y = x 1 0
20 19 oveq2d i = I r = R k + f y i if y = x 1 0 = k + f y I if y = x 1 0
21 20 fveq2d i = I r = R f k + f y i if y = x 1 0 = f k + f y I if y = x 1 0
22 17 18 21 oveq123d i = I r = R k x + 1 r f k + f y i if y = x 1 0 = k x + 1 R f k + f y I if y = x 1 0
23 15 22 mpteq12dv i = I r = R k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0 = k D k x + 1 R f k + f y I if y = x 1 0
24 12 23 mpteq12dv i = I r = R f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0 = f B k D k x + 1 R f k + f y I if y = x 1 0
25 8 24 mpteq12dv i = I r = R x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0 = x I f B k D k x + 1 R f k + f y I if y = x 1 0
26 25 adantl φ i = I r = R x i f Base i mPwSer r k h 0 i | h -1 Fin k x + 1 r f k + f y i if y = x 1 0 = x I f B k D k x + 1 R f k + f y I if y = x 1 0
27 4 elexd φ I V
28 5 elexd φ R V
29 4 mptexd φ x I f B k D k x + 1 R f k + f y I if y = x 1 0 V
30 7 26 27 28 29 ovmpod φ I mPSDer R = x I f B k D k x + 1 R f k + f y I if y = x 1 0