Metamath Proof Explorer


Theorem psdfval

Description: Give a map between power series and their partial derivatives with respect to a given variable X . (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdffval.s S = I mPwSer R
psdffval.b B = Base S
psdffval.d D = h 0 I | h -1 Fin
psdffval.i φ I V
psdffval.r φ R W
psdfval.x φ X I
Assertion psdfval φ I mPSDer R X = f B k D k X + 1 R f k + f y I if y = X 1 0

Proof

Step Hyp Ref Expression
1 psdffval.s S = I mPwSer R
2 psdffval.b B = Base S
3 psdffval.d D = h 0 I | h -1 Fin
4 psdffval.i φ I V
5 psdffval.r φ R W
6 psdfval.x φ X I
7 1 2 3 4 5 psdffval φ I mPSDer R = x I f B k D k x + 1 R f k + f y I if y = x 1 0
8 fveq2 x = X k x = k X
9 8 oveq1d x = X k x + 1 = k X + 1
10 eqeq2 x = X y = x y = X
11 10 ifbid x = X if y = x 1 0 = if y = X 1 0
12 11 mpteq2dv x = X y I if y = x 1 0 = y I if y = X 1 0
13 12 oveq2d x = X k + f y I if y = x 1 0 = k + f y I if y = X 1 0
14 13 fveq2d x = X f k + f y I if y = x 1 0 = f k + f y I if y = X 1 0
15 9 14 oveq12d x = X k x + 1 R f k + f y I if y = x 1 0 = k X + 1 R f k + f y I if y = X 1 0
16 15 mpteq2dv x = X k D k x + 1 R f k + f y I if y = x 1 0 = k D k X + 1 R f k + f y I if y = X 1 0
17 16 mpteq2dv x = X f B k D k x + 1 R f k + f y I if y = x 1 0 = f B k D k X + 1 R f k + f y I if y = X 1 0
18 17 adantl φ x = X f B k D k x + 1 R f k + f y I if y = x 1 0 = f B k D k X + 1 R f k + f y I if y = X 1 0
19 2 fvexi B V
20 19 a1i φ B V
21 20 mptexd φ f B k D k X + 1 R f k + f y I if y = X 1 0 V
22 7 18 6 21 fvmptd φ I mPSDer R X = f B k D k X + 1 R f k + f y I if y = X 1 0