Database
BASIC LINEAR ALGEBRA
Abstract multivariate polynomials
Additional definitions for (multivariate) polynomials
psdval
Next ⟩
psdcoef
Metamath Proof Explorer
Ascii
Unicode
Theorem
psdval
Description:
Evaluate the partial derivative of a power series.
(Contributed by
SN
, 11-Apr-2025)
Ref
Expression
Hypotheses
psdffval.s
⊢
S
=
I
mPwSer
R
psdffval.b
⊢
B
=
Base
S
psdffval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
psdffval.i
⊢
φ
→
I
∈
V
psdffval.r
⊢
φ
→
R
∈
W
psdfval.x
⊢
φ
→
X
∈
I
psdval.f
⊢
φ
→
F
∈
B
Assertion
psdval
⊢
φ
→
I
mPSDer
R
⁡
X
⁡
F
=
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
Proof
Step
Hyp
Ref
Expression
1
psdffval.s
⊢
S
=
I
mPwSer
R
2
psdffval.b
⊢
B
=
Base
S
3
psdffval.d
⊢
D
=
h
∈
ℕ
0
I
|
h
-1
ℕ
∈
Fin
4
psdffval.i
⊢
φ
→
I
∈
V
5
psdffval.r
⊢
φ
→
R
∈
W
6
psdfval.x
⊢
φ
→
X
∈
I
7
psdval.f
⊢
φ
→
F
∈
B
8
1
2
3
4
5
6
psdfval
⊢
φ
→
I
mPSDer
R
⁡
X
=
f
∈
B
⟼
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
f
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
9
fveq1
⊢
f
=
F
→
f
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
=
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
10
9
oveq2d
⊢
f
=
F
→
k
⁡
X
+
1
⋅
R
f
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
=
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
11
10
mpteq2dv
⊢
f
=
F
→
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
f
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
=
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
12
11
adantl
⊢
φ
∧
f
=
F
→
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
f
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
=
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
13
ovex
⊢
ℕ
0
I
∈
V
14
3
13
rabex2
⊢
D
∈
V
15
14
a1i
⊢
φ
→
D
∈
V
16
15
mptexd
⊢
φ
→
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0
∈
V
17
8
12
7
16
fvmptd
⊢
φ
→
I
mPSDer
R
⁡
X
⁡
F
=
k
∈
D
⟼
k
⁡
X
+
1
⋅
R
F
⁡
k
+
f
y
∈
I
⟼
if
y
=
X
1
0