Metamath Proof Explorer


Theorem psdval

Description: Evaluate the partial derivative of a power series. (Contributed by SN, 11-Apr-2025)

Ref Expression
Hypotheses psdffval.s S = I mPwSer R
psdffval.b B = Base S
psdffval.d D = h 0 I | h -1 Fin
psdffval.i φ I V
psdffval.r φ R W
psdfval.x φ X I
psdval.f φ F B
Assertion psdval φ I mPSDer R X F = k D k X + 1 R F k + f y I if y = X 1 0

Proof

Step Hyp Ref Expression
1 psdffval.s S = I mPwSer R
2 psdffval.b B = Base S
3 psdffval.d D = h 0 I | h -1 Fin
4 psdffval.i φ I V
5 psdffval.r φ R W
6 psdfval.x φ X I
7 psdval.f φ F B
8 1 2 3 4 5 6 psdfval φ I mPSDer R X = f B k D k X + 1 R f k + f y I if y = X 1 0
9 fveq1 f = F f k + f y I if y = X 1 0 = F k + f y I if y = X 1 0
10 9 oveq2d f = F k X + 1 R f k + f y I if y = X 1 0 = k X + 1 R F k + f y I if y = X 1 0
11 10 mpteq2dv f = F k D k X + 1 R f k + f y I if y = X 1 0 = k D k X + 1 R F k + f y I if y = X 1 0
12 11 adantl φ f = F k D k X + 1 R f k + f y I if y = X 1 0 = k D k X + 1 R F k + f y I if y = X 1 0
13 ovex 0 I V
14 3 13 rabex2 D V
15 14 a1i φ D V
16 15 mptexd φ k D k X + 1 R F k + f y I if y = X 1 0 V
17 8 12 7 16 fvmptd φ I mPSDer R X F = k D k X + 1 R F k + f y I if y = X 1 0