Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
pserulm.h |
|
6 |
|
pserulm.m |
|
7 |
|
pserulm.l |
|
8 |
|
pserulm.y |
|
9 |
|
nn0uz |
|
10 |
|
0zd |
|
11 |
|
cnvimass |
|
12 |
|
absf |
|
13 |
12
|
fdmi |
|
14 |
11 13
|
sseqtri |
|
15 |
8 14
|
sstrdi |
|
16 |
15
|
adantr |
|
17 |
16
|
resmptd |
|
18 |
|
simplr |
|
19 |
|
elfznn0 |
|
20 |
19
|
adantl |
|
21 |
1
|
pserval2 |
|
22 |
18 20 21
|
syl2anc |
|
23 |
|
simpr |
|
24 |
23 9
|
eleqtrdi |
|
25 |
24
|
adantr |
|
26 |
3
|
adantr |
|
27 |
26
|
ffvelrnda |
|
28 |
27
|
adantlr |
|
29 |
|
expcl |
|
30 |
29
|
adantll |
|
31 |
28 30
|
mulcld |
|
32 |
19 31
|
sylan2 |
|
33 |
22 25 32
|
fsumser |
|
34 |
33
|
mpteq2dva |
|
35 |
|
eqid |
|
36 |
35
|
cnfldtopon |
|
37 |
36
|
a1i |
|
38 |
|
fzfid |
|
39 |
36
|
a1i |
|
40 |
|
ffvelrn |
|
41 |
26 19 40
|
syl2an |
|
42 |
39 39 41
|
cnmptc |
|
43 |
19
|
adantl |
|
44 |
35
|
expcn |
|
45 |
43 44
|
syl |
|
46 |
35
|
mulcn |
|
47 |
46
|
a1i |
|
48 |
39 42 45 47
|
cnmpt12f |
|
49 |
35 37 38 48
|
fsumcn |
|
50 |
35
|
cncfcn1 |
|
51 |
49 50
|
eleqtrrdi |
|
52 |
34 51
|
eqeltrrd |
|
53 |
|
rescncf |
|
54 |
16 52 53
|
sylc |
|
55 |
17 54
|
eqeltrrd |
|
56 |
55 5
|
fmptd |
|
57 |
1 2 3 4 5 6 7 8
|
pserulm |
|
58 |
9 10 56 57
|
ulmcn |
|