Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
psercn.s |
|
6 |
|
psercnlem2.i |
|
7 |
|
cnvimass |
|
8 |
|
absf |
|
9 |
8
|
fdmi |
|
10 |
7 9
|
sseqtri |
|
11 |
5 10
|
eqsstri |
|
12 |
11
|
a1i |
|
13 |
12
|
sselda |
|
14 |
13
|
abscld |
|
15 |
13
|
absge0d |
|
16 |
6
|
simp2d |
|
17 |
|
0re |
|
18 |
6
|
simp1d |
|
19 |
18
|
rpxrd |
|
20 |
|
elico2 |
|
21 |
17 19 20
|
sylancr |
|
22 |
14 15 16 21
|
mpbir3and |
|
23 |
|
ffn |
|
24 |
|
elpreima |
|
25 |
8 23 24
|
mp2b |
|
26 |
13 22 25
|
sylanbrc |
|
27 |
|
eqid |
|
28 |
27
|
cnbl0 |
|
29 |
19 28
|
syl |
|
30 |
26 29
|
eleqtrd |
|
31 |
|
icossicc |
|
32 |
|
imass2 |
|
33 |
31 32
|
mp1i |
|
34 |
29 33
|
eqsstrrd |
|
35 |
|
iccssxr |
|
36 |
1 3 4
|
radcnvcl |
|
37 |
36
|
adantr |
|
38 |
35 37
|
sselid |
|
39 |
6
|
simp3d |
|
40 |
|
df-ico |
|
41 |
|
df-icc |
|
42 |
|
xrlelttr |
|
43 |
40 41 42
|
ixxss2 |
|
44 |
38 39 43
|
syl2anc |
|
45 |
|
imass2 |
|
46 |
44 45
|
syl |
|
47 |
46 5
|
sseqtrrdi |
|
48 |
30 34 47
|
3jca |
|