Metamath Proof Explorer


Theorem pserdv2

Description: The derivative of a power series on its region of convergence. (Contributed by Mario Carneiro, 31-Mar-2015)

Ref Expression
Hypotheses pserf.g G = x n 0 A n x n
pserf.f F = y S j 0 G y j
pserf.a φ A : 0
pserf.r R = sup r | seq 0 + G r dom * <
psercn.s S = abs -1 0 R
psercn.m M = if R a + R 2 a + 1
pserdv.b B = 0 ball abs a + M 2
Assertion pserdv2 φ D F = y S k k A k y k 1

Proof

Step Hyp Ref Expression
1 pserf.g G = x n 0 A n x n
2 pserf.f F = y S j 0 G y j
3 pserf.a φ A : 0
4 pserf.r R = sup r | seq 0 + G r dom * <
5 psercn.s S = abs -1 0 R
6 psercn.m M = if R a + R 2 a + 1
7 pserdv.b B = 0 ball abs a + M 2
8 1 2 3 4 5 6 7 pserdv φ D F = y S m 0 m + 1 A m + 1 y m
9 nn0uz 0 = 0
10 nnuz = 1
11 1e0p1 1 = 0 + 1
12 11 fveq2i 1 = 0 + 1
13 10 12 eqtri = 0 + 1
14 id k = 1 + m k = 1 + m
15 fveq2 k = 1 + m A k = A 1 + m
16 14 15 oveq12d k = 1 + m k A k = 1 + m A 1 + m
17 oveq1 k = 1 + m k 1 = 1 + m - 1
18 17 oveq2d k = 1 + m y k 1 = y 1 + m - 1
19 16 18 oveq12d k = 1 + m k A k y k 1 = 1 + m A 1 + m y 1 + m - 1
20 1zzd φ y S 1
21 0zd φ y S 0
22 nncn k k
23 22 adantl φ y S k k
24 3 adantr φ y S A : 0
25 nnnn0 k k 0
26 ffvelrn A : 0 k 0 A k
27 24 25 26 syl2an φ y S k A k
28 23 27 mulcld φ y S k k A k
29 cnvimass abs -1 0 R dom abs
30 absf abs :
31 30 fdmi dom abs =
32 29 31 sseqtri abs -1 0 R
33 5 32 eqsstri S
34 33 a1i φ S
35 34 sselda φ y S y
36 nnm1nn0 k k 1 0
37 expcl y k 1 0 y k 1
38 35 36 37 syl2an φ y S k y k 1
39 28 38 mulcld φ y S k k A k y k 1
40 9 13 19 20 21 39 isumshft φ y S k k A k y k 1 = m 0 1 + m A 1 + m y 1 + m - 1
41 ax-1cn 1
42 nn0cn m 0 m
43 42 adantl φ y S m 0 m
44 addcom 1 m 1 + m = m + 1
45 41 43 44 sylancr φ y S m 0 1 + m = m + 1
46 45 fveq2d φ y S m 0 A 1 + m = A m + 1
47 45 46 oveq12d φ y S m 0 1 + m A 1 + m = m + 1 A m + 1
48 pncan2 1 m 1 + m - 1 = m
49 41 43 48 sylancr φ y S m 0 1 + m - 1 = m
50 49 oveq2d φ y S m 0 y 1 + m - 1 = y m
51 47 50 oveq12d φ y S m 0 1 + m A 1 + m y 1 + m - 1 = m + 1 A m + 1 y m
52 51 sumeq2dv φ y S m 0 1 + m A 1 + m y 1 + m - 1 = m 0 m + 1 A m + 1 y m
53 40 52 eqtr2d φ y S m 0 m + 1 A m + 1 y m = k k A k y k 1
54 53 mpteq2dva φ y S m 0 m + 1 A m + 1 y m = y S k k A k y k 1
55 8 54 eqtrd φ D F = y S k k A k y k 1