Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
psercn.s |
|
6 |
|
psercn.m |
|
7 |
|
pserdv.b |
|
8 |
1 2 3 4 5 6 7
|
pserdv |
|
9 |
|
nn0uz |
|
10 |
|
nnuz |
|
11 |
|
1e0p1 |
|
12 |
11
|
fveq2i |
|
13 |
10 12
|
eqtri |
|
14 |
|
id |
|
15 |
|
fveq2 |
|
16 |
14 15
|
oveq12d |
|
17 |
|
oveq1 |
|
18 |
17
|
oveq2d |
|
19 |
16 18
|
oveq12d |
|
20 |
|
1zzd |
|
21 |
|
0zd |
|
22 |
|
nncn |
|
23 |
22
|
adantl |
|
24 |
3
|
adantr |
|
25 |
|
nnnn0 |
|
26 |
|
ffvelrn |
|
27 |
24 25 26
|
syl2an |
|
28 |
23 27
|
mulcld |
|
29 |
|
cnvimass |
|
30 |
|
absf |
|
31 |
30
|
fdmi |
|
32 |
29 31
|
sseqtri |
|
33 |
5 32
|
eqsstri |
|
34 |
33
|
a1i |
|
35 |
34
|
sselda |
|
36 |
|
nnm1nn0 |
|
37 |
|
expcl |
|
38 |
35 36 37
|
syl2an |
|
39 |
28 38
|
mulcld |
|
40 |
9 13 19 20 21 39
|
isumshft |
|
41 |
|
ax-1cn |
|
42 |
|
nn0cn |
|
43 |
42
|
adantl |
|
44 |
|
addcom |
|
45 |
41 43 44
|
sylancr |
|
46 |
45
|
fveq2d |
|
47 |
45 46
|
oveq12d |
|
48 |
|
pncan2 |
|
49 |
41 43 48
|
sylancr |
|
50 |
49
|
oveq2d |
|
51 |
47 50
|
oveq12d |
|
52 |
51
|
sumeq2dv |
|
53 |
40 52
|
eqtr2d |
|
54 |
53
|
mpteq2dva |
|
55 |
8 54
|
eqtrd |
|