Step |
Hyp |
Ref |
Expression |
1 |
|
pserf.g |
|
2 |
|
pserf.f |
|
3 |
|
pserf.a |
|
4 |
|
pserf.r |
|
5 |
|
psercn.s |
|
6 |
|
psercn.m |
|
7 |
|
cnvimass |
|
8 |
|
absf |
|
9 |
8
|
fdmi |
|
10 |
7 9
|
sseqtri |
|
11 |
5 10
|
eqsstri |
|
12 |
11
|
a1i |
|
13 |
12
|
sselda |
|
14 |
13
|
abscld |
|
15 |
1 2 3 4 5 6
|
psercnlem1 |
|
16 |
15
|
simp1d |
|
17 |
16
|
rpred |
|
18 |
14 17
|
readdcld |
|
19 |
|
0red |
|
20 |
13
|
absge0d |
|
21 |
14 16
|
ltaddrpd |
|
22 |
19 14 18 20 21
|
lelttrd |
|
23 |
18 22
|
elrpd |
|
24 |
23
|
rphalfcld |
|
25 |
15
|
simp2d |
|
26 |
|
avglt1 |
|
27 |
14 17 26
|
syl2anc |
|
28 |
25 27
|
mpbid |
|
29 |
18
|
rehalfcld |
|
30 |
29
|
rexrd |
|
31 |
17
|
rexrd |
|
32 |
|
iccssxr |
|
33 |
1 3 4
|
radcnvcl |
|
34 |
32 33
|
sselid |
|
35 |
34
|
adantr |
|
36 |
|
avglt2 |
|
37 |
14 17 36
|
syl2anc |
|
38 |
25 37
|
mpbid |
|
39 |
15
|
simp3d |
|
40 |
30 31 35 38 39
|
xrlttrd |
|
41 |
24 28 40
|
3jca |
|