Metamath Proof Explorer


Theorem psergf

Description: The sequence of terms in the infinite sequence defining a power series for fixed X . (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Hypotheses pser.g G = x n 0 A n x n
radcnv.a φ A : 0
psergf.x φ X
Assertion psergf φ G X : 0

Proof

Step Hyp Ref Expression
1 pser.g G = x n 0 A n x n
2 radcnv.a φ A : 0
3 psergf.x φ X
4 1 pserval X G X = m 0 A m X m
5 4 adantl A : 0 X G X = m 0 A m X m
6 ffvelrn A : 0 m 0 A m
7 6 adantlr A : 0 X m 0 A m
8 expcl X m 0 X m
9 8 adantll A : 0 X m 0 X m
10 7 9 mulcld A : 0 X m 0 A m X m
11 5 10 fmpt3d A : 0 X G X : 0
12 2 3 11 syl2anc φ G X : 0