Metamath Proof Explorer


Theorem psgnco

Description: Multiplicativity of the permutation sign function. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses psgninv.s S = SymGrp D
psgninv.n N = pmSgn D
psgninv.p P = Base S
Assertion psgnco D Fin F P G P N F G = N F N G

Proof

Step Hyp Ref Expression
1 psgninv.s S = SymGrp D
2 psgninv.n N = pmSgn D
3 psgninv.p P = Base S
4 eqid + S = + S
5 1 3 4 symgov F P G P F + S G = F G
6 5 3adant1 D Fin F P G P F + S G = F G
7 6 fveq2d D Fin F P G P N F + S G = N F G
8 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
9 1 2 8 psgnghm2 D Fin N S GrpHom mulGrp fld 𝑠 1 1
10 prex 1 1 V
11 eqid mulGrp fld = mulGrp fld
12 cnfldmul × = fld
13 11 12 mgpplusg × = + mulGrp fld
14 8 13 ressplusg 1 1 V × = + mulGrp fld 𝑠 1 1
15 10 14 ax-mp × = + mulGrp fld 𝑠 1 1
16 3 4 15 ghmlin N S GrpHom mulGrp fld 𝑠 1 1 F P G P N F + S G = N F N G
17 9 16 syl3an1 D Fin F P G P N F + S G = N F N G
18 7 17 eqtr3d D Fin F P G P N F G = N F N G