Step |
Hyp |
Ref |
Expression |
1 |
|
psgndif.p |
|
2 |
|
psgndif.s |
|
3 |
|
psgndif.z |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
1 4 5 6 7
|
psgnfix2 |
|
9 |
8
|
imp |
|
10 |
9
|
ad2antrr |
|
11 |
1 4 5 6 7
|
psgndiflemA |
|
12 |
11
|
imp |
|
13 |
12
|
3anassrs |
|
14 |
13
|
adantlrr |
|
15 |
|
eqeq1 |
|
16 |
15
|
ad2antll |
|
17 |
16
|
adantr |
|
18 |
14 17
|
sylibrd |
|
19 |
18
|
ralrimiva |
|
20 |
10 19
|
r19.29imd |
|
21 |
20
|
rexlimdva2 |
|
22 |
1 4 5
|
psgnfix1 |
|
23 |
22
|
imp |
|
24 |
23
|
ad2antrr |
|
25 |
|
simp-4l |
|
26 |
|
simpr |
|
27 |
26
|
adantr |
|
28 |
|
simpr |
|
29 |
|
simp-4r |
|
30 |
27 28 29
|
3jca |
|
31 |
|
simpr |
|
32 |
31
|
ad2antrr |
|
33 |
25 30 32 11
|
syl3c |
|
34 |
33
|
eqcomd |
|
35 |
34
|
ex |
|
36 |
35
|
adantlrr |
|
37 |
|
eqeq1 |
|
38 |
37
|
ad2antll |
|
39 |
38
|
adantr |
|
40 |
36 39
|
sylibrd |
|
41 |
40
|
ralrimiva |
|
42 |
24 41
|
r19.29imd |
|
43 |
42
|
rexlimdva2 |
|
44 |
21 43
|
impbid |
|
45 |
44
|
iotabidv |
|
46 |
|
diffi |
|
47 |
46
|
ad2antrr |
|
48 |
|
eqid |
|
49 |
|
eqid |
|
50 |
|
eqid |
|
51 |
1 48 49 50
|
symgfixelsi |
|
52 |
51
|
adantll |
|
53 |
5 49 4 3
|
psgnvalfi |
|
54 |
47 52 53
|
syl2anc |
|
55 |
|
simpl |
|
56 |
|
elrabi |
|
57 |
6 1 7 2
|
psgnvalfi |
|
58 |
55 56 57
|
syl2an |
|
59 |
45 54 58
|
3eqtr4d |
|
60 |
59
|
ex |
|