Metamath Proof Explorer


Theorem psgndif

Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses psgndif.p P = Base SymGrp N
psgndif.s S = pmSgn N
psgndif.z Z = pmSgn N K
Assertion psgndif N Fin K N Q q P | q K = K Z Q N K = S Q

Proof

Step Hyp Ref Expression
1 psgndif.p P = Base SymGrp N
2 psgndif.s S = pmSgn N
3 psgndif.z Z = pmSgn N K
4 eqid ran pmTrsp N K = ran pmTrsp N K
5 eqid SymGrp N K = SymGrp N K
6 eqid SymGrp N = SymGrp N
7 eqid ran pmTrsp N = ran pmTrsp N
8 1 4 5 6 7 psgnfix2 N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r
9 8 imp N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r
10 9 ad2antrr N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r
11 1 4 5 6 7 psgndiflemA N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w r Word ran pmTrsp N Q = SymGrp N r 1 w = 1 r
12 11 imp N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w r Word ran pmTrsp N Q = SymGrp N r 1 w = 1 r
13 12 3anassrs N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w r Word ran pmTrsp N Q = SymGrp N r 1 w = 1 r
14 13 adantlrr N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r 1 w = 1 r
15 eqeq1 s = 1 w s = 1 r 1 w = 1 r
16 15 ad2antll N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w s = 1 r 1 w = 1 r
17 16 adantr N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N s = 1 r 1 w = 1 r
18 14 17 sylibrd N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r s = 1 r
19 18 ralrimiva N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r s = 1 r
20 10 19 r19.29imd N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r s = 1 r
21 20 rexlimdva2 N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r s = 1 r
22 1 4 5 psgnfix1 N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w
23 22 imp N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w
24 23 ad2antrr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w
25 simp-4l N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w N Fin K N Q q P | q K = K
26 simpr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K w Word ran pmTrsp N K
27 26 adantr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w w Word ran pmTrsp N K
28 simpr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w Q N K = SymGrp N K w
29 simp-4r N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w r Word ran pmTrsp N
30 27 28 29 3jca N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w w Word ran pmTrsp N K Q N K = SymGrp N K w r Word ran pmTrsp N
31 simpr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r Q = SymGrp N r
32 31 ad2antrr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w Q = SymGrp N r
33 25 30 32 11 syl3c N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w 1 w = 1 r
34 33 eqcomd N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w 1 r = 1 w
35 34 ex N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r w Word ran pmTrsp N K Q N K = SymGrp N K w 1 r = 1 w
36 35 adantlrr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w 1 r = 1 w
37 eqeq1 s = 1 r s = 1 w 1 r = 1 w
38 37 ad2antll N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r s = 1 w 1 r = 1 w
39 38 adantr N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K s = 1 w 1 r = 1 w
40 36 39 sylibrd N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
41 40 ralrimiva N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
42 24 41 r19.29imd N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
43 42 rexlimdva2 N Fin K N Q q P | q K = K r Word ran pmTrsp N Q = SymGrp N r s = 1 r w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
44 21 43 impbid N Fin K N Q q P | q K = K w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w r Word ran pmTrsp N Q = SymGrp N r s = 1 r
45 44 iotabidv N Fin K N Q q P | q K = K ι s | w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w = ι s | r Word ran pmTrsp N Q = SymGrp N r s = 1 r
46 diffi N Fin N K Fin
47 46 ad2antrr N Fin K N Q q P | q K = K N K Fin
48 eqid q P | q K = K = q P | q K = K
49 eqid Base SymGrp N K = Base SymGrp N K
50 eqid N K = N K
51 1 48 49 50 symgfixelsi K N Q q P | q K = K Q N K Base SymGrp N K
52 51 adantll N Fin K N Q q P | q K = K Q N K Base SymGrp N K
53 5 49 4 3 psgnvalfi N K Fin Q N K Base SymGrp N K Z Q N K = ι s | w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
54 47 52 53 syl2anc N Fin K N Q q P | q K = K Z Q N K = ι s | w Word ran pmTrsp N K Q N K = SymGrp N K w s = 1 w
55 simpl N Fin K N N Fin
56 elrabi Q q P | q K = K Q P
57 6 1 7 2 psgnvalfi N Fin Q P S Q = ι s | r Word ran pmTrsp N Q = SymGrp N r s = 1 r
58 55 56 57 syl2an N Fin K N Q q P | q K = K S Q = ι s | r Word ran pmTrsp N Q = SymGrp N r s = 1 r
59 45 54 58 3eqtr4d N Fin K N Q q P | q K = K Z Q N K = S Q
60 59 ex N Fin K N Q q P | q K = K Z Q N K = S Q