Metamath Proof Explorer


Theorem psgndiflemA

Description: Lemma 2 for psgndif . (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P = Base SymGrp N
psgnfix.t T = ran pmTrsp N K
psgnfix.s S = SymGrp N K
psgnfix.z Z = SymGrp N
psgnfix.r R = ran pmTrsp N
Assertion psgndiflemA N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U

Proof

Step Hyp Ref Expression
1 psgnfix.p P = Base SymGrp N
2 psgnfix.t T = ran pmTrsp N K
3 psgnfix.s S = SymGrp N K
4 psgnfix.z Z = SymGrp N
5 psgnfix.r R = ran pmTrsp N
6 fveq2 w = W w = W
7 6 eqeq1d w = W w = r W = r
8 6 oveq2d w = W 0 ..^ w = 0 ..^ W
9 fveq1 w = W w i = W i
10 9 fveq1d w = W w i n = W i n
11 10 eqeq1d w = W w i n = r i n W i n = r i n
12 11 ralbidv w = W n N K w i n = r i n n N K W i n = r i n
13 12 anbi2d w = W r i K = K n N K w i n = r i n r i K = K n N K W i n = r i n
14 8 13 raleqbidv w = W i 0 ..^ w r i K = K n N K w i n = r i n i 0 ..^ W r i K = K n N K W i n = r i n
15 7 14 anbi12d w = W w = r i 0 ..^ w r i K = K n N K w i n = r i n W = r i 0 ..^ W r i K = K n N K W i n = r i n
16 15 rexbidv w = W r Word R w = r i 0 ..^ w r i K = K n N K w i n = r i n r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
17 16 rspccv w Word T r Word R w = r i 0 ..^ w r i K = K n N K w i n = r i n W Word T r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
18 2 5 pmtrdifwrdel2 K N w Word T r Word R w = r i 0 ..^ w r i K = K n N K w i n = r i n
19 17 18 syl11 W Word T K N r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
20 19 3ad2ant1 W Word T Q N K = S W U Word R K N r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
21 20 com12 K N W Word T Q N K = S W U Word R r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
22 21 ad2antlr N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
23 22 imp N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n
24 oveq2 W = r 1 W = 1 r
25 24 adantr W = r i 0 ..^ W r i K = K n N K W i n = r i n 1 W = 1 r
26 25 ad3antlr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 r
27 simplll N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R N Fin
28 27 ad2antlr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U N Fin
29 simplll r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U r Word R
30 simprr3 r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R U Word R
31 30 adantr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U U Word R
32 simplrl r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U N Fin K N Q q P | q K = K
33 3simpa W Word T Q N K = S W U Word R W Word T Q N K = S W
34 33 adantl N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R W Word T Q N K = S W
35 34 ad2antlr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U W Word T Q N K = S W
36 simplrl r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R W = r
37 36 adantr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U W = r
38 simplrr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R i 0 ..^ W r i K = K n N K W i n = r i n
39 38 adantr r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U i 0 ..^ W r i K = K n N K W i n = r i n
40 1 2 3 4 5 psgndiflemB N Fin K N Q q P | q K = K W Word T Q N K = S W r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n Q = Z r
41 40 imp31 N Fin K N Q q P | q K = K W Word T Q N K = S W r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n Q = Z r
42 41 eqcomd N Fin K N Q q P | q K = K W Word T Q N K = S W r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n Z r = Q
43 32 35 29 37 39 42 syl23anc r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U Z r = Q
44 id Q = SymGrp N U Q = SymGrp N U
45 4 eqcomi SymGrp N = Z
46 45 oveq1i SymGrp N U = Z U
47 44 46 eqtrdi Q = SymGrp N U Q = Z U
48 47 adantl r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U Q = Z U
49 43 48 eqtrd r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U Z r = Z U
50 4 5 28 29 31 49 psgnuni r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 r = 1 U
51 26 50 eqtrd r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U
52 51 ex r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U
53 52 ex r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U
54 53 rexlimiva r Word R W = r i 0 ..^ W r i K = K n N K W i n = r i n N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U
55 23 54 mpcom N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U
56 55 ex N Fin K N Q q P | q K = K W Word T Q N K = S W U Word R Q = SymGrp N U 1 W = 1 U