| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnfix.p |
|
| 2 |
|
psgnfix.t |
|
| 3 |
|
psgnfix.s |
|
| 4 |
|
psgnfix.z |
|
| 5 |
|
psgnfix.r |
|
| 6 |
|
elrabi |
|
| 7 |
|
eqid |
|
| 8 |
7 1
|
symgbasf |
|
| 9 |
|
ffn |
|
| 10 |
6 8 9
|
3syl |
|
| 11 |
10
|
ad3antlr |
|
| 12 |
|
simpl |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
adantr |
|
| 15 |
|
simp1 |
|
| 16 |
4
|
eqcomi |
|
| 17 |
16
|
fveq2i |
|
| 18 |
1 17
|
eqtri |
|
| 19 |
4 18 5
|
gsmtrcl |
|
| 20 |
14 15 19
|
syl2an |
|
| 21 |
7 1
|
symgbasf |
|
| 22 |
|
ffn |
|
| 23 |
20 21 22
|
3syl |
|
| 24 |
12
|
ad3antrrr |
|
| 25 |
|
simpr |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
|
eqid |
|
| 28 |
5 4 27
|
symgtrf |
|
| 29 |
|
sswrd |
|
| 30 |
29
|
sseld |
|
| 31 |
28 30
|
ax-mp |
|
| 32 |
31
|
3ad2ant1 |
|
| 33 |
32
|
adantl |
|
| 34 |
24 26 33
|
3jca |
|
| 35 |
|
simpl |
|
| 36 |
35
|
ralimi |
|
| 37 |
36
|
3ad2ant3 |
|
| 38 |
37
|
adantl |
|
| 39 |
|
oveq2 |
|
| 40 |
39
|
eqcoms |
|
| 41 |
40
|
raleqdv |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
42
|
adantl |
|
| 44 |
38 43
|
mpbird |
|
| 45 |
4 27
|
gsmsymgrfix |
|
| 46 |
34 44 45
|
sylc |
|
| 47 |
46
|
eqcomd |
|
| 48 |
47
|
adantr |
|
| 49 |
|
fveq2 |
|
| 50 |
|
fveq1 |
|
| 51 |
50
|
eqeq1d |
|
| 52 |
51
|
elrab |
|
| 53 |
52
|
simprbi |
|
| 54 |
53
|
ad3antlr |
|
| 55 |
49 54
|
sylan9eqr |
|
| 56 |
|
fveq2 |
|
| 57 |
56
|
adantl |
|
| 58 |
48 55 57
|
3eqtr4d |
|
| 59 |
58
|
ex |
|
| 60 |
59
|
adantr |
|
| 61 |
60
|
com12 |
|
| 62 |
|
fveq1 |
|
| 63 |
62
|
adantl |
|
| 64 |
63
|
ad3antlr |
|
| 65 |
64
|
adantl |
|
| 66 |
|
simpr |
|
| 67 |
|
neqne |
|
| 68 |
66 67
|
anim12i |
|
| 69 |
|
eldifsn |
|
| 70 |
68 69
|
sylibr |
|
| 71 |
70
|
fvresd |
|
| 72 |
71
|
exp31 |
|
| 73 |
72
|
ad3antrrr |
|
| 74 |
73
|
imp |
|
| 75 |
74
|
impcom |
|
| 76 |
|
fveq2 |
|
| 77 |
|
fveq2 |
|
| 78 |
76 77
|
eqeq12d |
|
| 79 |
|
diffi |
|
| 80 |
79
|
ancri |
|
| 81 |
80
|
adantr |
|
| 82 |
81
|
ad3antrrr |
|
| 83 |
|
eqid |
|
| 84 |
2 3 83
|
symgtrf |
|
| 85 |
|
sswrd |
|
| 86 |
85
|
sseld |
|
| 87 |
84 86
|
ax-mp |
|
| 88 |
87
|
ad2antrl |
|
| 89 |
88
|
adantr |
|
| 90 |
|
simpr2 |
|
| 91 |
89 33 90
|
3jca |
|
| 92 |
82 91
|
jca |
|
| 93 |
92
|
ad2antrl |
|
| 94 |
|
simpr |
|
| 95 |
94
|
ralimi |
|
| 96 |
95
|
3ad2ant3 |
|
| 97 |
96
|
adantl |
|
| 98 |
97
|
ad2antrl |
|
| 99 |
|
incom |
|
| 100 |
|
indif |
|
| 101 |
99 100
|
eqtri |
|
| 102 |
101
|
eqcomi |
|
| 103 |
3 83 4 27 102
|
gsmsymgreq |
|
| 104 |
93 98 103
|
sylc |
|
| 105 |
67
|
anim2i |
|
| 106 |
105 69
|
sylibr |
|
| 107 |
106
|
ex |
|
| 108 |
107
|
adantl |
|
| 109 |
108
|
impcom |
|
| 110 |
78 104 109
|
rspcdva |
|
| 111 |
65 75 110
|
3eqtr3d |
|
| 112 |
111
|
ex |
|
| 113 |
61 112
|
pm2.61i |
|
| 114 |
11 23 113
|
eqfnfvd |
|
| 115 |
114
|
exp31 |
|