Metamath Proof Explorer


Theorem psgndmsubg

Description: The finitary permutations are a subgroup. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgneldm.g G = SymGrp D
psgneldm.n N = pmSgn D
Assertion psgndmsubg D V dom N SubGrp G

Proof

Step Hyp Ref Expression
1 psgneldm.g G = SymGrp D
2 psgneldm.n N = pmSgn D
3 eqid Base G = Base G
4 eqid p Base G | dom p I Fin = p Base G | dom p I Fin
5 1 3 4 2 psgnfn N Fn p Base G | dom p I Fin
6 fndm N Fn p Base G | dom p I Fin dom N = p Base G | dom p I Fin
7 5 6 ax-mp dom N = p Base G | dom p I Fin
8 1 3 symgfisg D V p Base G | dom p I Fin SubGrp G
9 7 8 eqeltrid D V dom N SubGrp G