Metamath Proof Explorer


Theorem psgneldm2i

Description: A sequence of transpositions describes a finitary permutation. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G = SymGrp D
psgnval.t T = ran pmTrsp D
psgnval.n N = pmSgn D
Assertion psgneldm2i D V W Word T G W dom N

Proof

Step Hyp Ref Expression
1 psgnval.g G = SymGrp D
2 psgnval.t T = ran pmTrsp D
3 psgnval.n N = pmSgn D
4 eqid G W = G W
5 oveq2 w = W G w = G W
6 5 rspceeqv W Word T G W = G W w Word T G W = G w
7 4 6 mpan2 W Word T w Word T G W = G w
8 1 2 3 psgneldm2 D V G W dom N w Word T G W = G w
9 8 biimpar D V w Word T G W = G w G W dom N
10 7 9 sylan2 D V W Word T G W dom N