| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnval.g |
|
| 2 |
|
psgnval.t |
|
| 3 |
|
psgnval.n |
|
| 4 |
|
eqid |
|
| 5 |
1 3 4
|
psgneldm |
|
| 6 |
5
|
simplbi |
|
| 7 |
1 4
|
elbasfv |
|
| 8 |
6 7
|
syl |
|
| 9 |
1 2 3
|
psgneldm2 |
|
| 10 |
8 9
|
syl |
|
| 11 |
10
|
ibi |
|
| 12 |
|
simpr |
|
| 13 |
|
eqid |
|
| 14 |
|
ovex |
|
| 15 |
|
eqeq1 |
|
| 16 |
15
|
anbi2d |
|
| 17 |
14 16
|
spcev |
|
| 18 |
12 13 17
|
sylancl |
|
| 19 |
18
|
ex |
|
| 20 |
19
|
reximdva |
|
| 21 |
11 20
|
mpd |
|
| 22 |
|
rexcom4 |
|
| 23 |
21 22
|
sylib |
|
| 24 |
|
reeanv |
|
| 25 |
8
|
ad2antrr |
|
| 26 |
|
simplrl |
|
| 27 |
|
simplrr |
|
| 28 |
|
simprll |
|
| 29 |
|
simprrl |
|
| 30 |
28 29
|
eqtr3d |
|
| 31 |
1 2 25 26 27 30
|
psgnuni |
|
| 32 |
|
simprlr |
|
| 33 |
|
simprrr |
|
| 34 |
31 32 33
|
3eqtr4d |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
rexlimdvva |
|
| 37 |
24 36
|
biimtrrid |
|
| 38 |
37
|
alrimivv |
|
| 39 |
|
eqeq1 |
|
| 40 |
39
|
anbi2d |
|
| 41 |
40
|
rexbidv |
|
| 42 |
|
oveq2 |
|
| 43 |
42
|
eqeq2d |
|
| 44 |
|
fveq2 |
|
| 45 |
44
|
oveq2d |
|
| 46 |
45
|
eqeq2d |
|
| 47 |
43 46
|
anbi12d |
|
| 48 |
47
|
cbvrexvw |
|
| 49 |
41 48
|
bitrdi |
|
| 50 |
49
|
eu4 |
|
| 51 |
23 38 50
|
sylanbrc |
|