Metamath Proof Explorer


Theorem psgnfieu

Description: A permutation of a finite set has exactly one parity. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfitr.g G = SymGrp N
psgnfitr.p B = Base G
psgnfitr.t T = ran pmTrsp N
Assertion psgnfieu N Fin Q B ∃! s w Word T Q = G w s = 1 w

Proof

Step Hyp Ref Expression
1 psgnfitr.g G = SymGrp N
2 psgnfitr.p B = Base G
3 psgnfitr.t T = ran pmTrsp N
4 simpr N Fin Q B Q B
5 1 2 sygbasnfpfi N Fin Q B dom Q I Fin
6 eqid pmSgn N = pmSgn N
7 1 6 2 psgneldm Q dom pmSgn N Q B dom Q I Fin
8 4 5 7 sylanbrc N Fin Q B Q dom pmSgn N
9 1 3 6 psgneu Q dom pmSgn N ∃! s w Word T Q = G w s = 1 w
10 8 9 syl N Fin Q B ∃! s w Word T Q = G w s = 1 w