Metamath Proof Explorer


Theorem psgnfitr

Description: A permutation of a finite set is generated by transpositions. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfitr.g G = SymGrp N
psgnfitr.p B = Base G
psgnfitr.t T = ran pmTrsp N
Assertion psgnfitr N Fin Q B w Word T Q = G w

Proof

Step Hyp Ref Expression
1 psgnfitr.g G = SymGrp N
2 psgnfitr.p B = Base G
3 psgnfitr.t T = ran pmTrsp N
4 eqid mrCls SubMnd G = mrCls SubMnd G
5 3 1 2 4 symggen2 N Fin mrCls SubMnd G T = B
6 1 symggrp N Fin G Grp
7 6 grpmndd N Fin G Mnd
8 eqid Base G = Base G
9 3 1 8 symgtrf T Base G
10 8 4 gsumwspan G Mnd T Base G mrCls SubMnd G T = ran w Word T G w
11 7 9 10 sylancl N Fin mrCls SubMnd G T = ran w Word T G w
12 5 11 eqtr3d N Fin B = ran w Word T G w
13 12 eleq2d N Fin Q B Q ran w Word T G w
14 eqid w Word T G w = w Word T G w
15 ovex G w V
16 14 15 elrnmpti Q ran w Word T G w w Word T Q = G w
17 13 16 bitrdi N Fin Q B w Word T Q = G w