Metamath Proof Explorer


Theorem psgnfix1

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P = Base SymGrp N
psgnfix.t T = ran pmTrsp N K
psgnfix.s S = SymGrp N K
Assertion psgnfix1 N Fin K N Q q P | q K = K w Word T Q N K = S w

Proof

Step Hyp Ref Expression
1 psgnfix.p P = Base SymGrp N
2 psgnfix.t T = ran pmTrsp N K
3 psgnfix.s S = SymGrp N K
4 eqid q P | q K = K = q P | q K = K
5 3 fveq2i Base S = Base SymGrp N K
6 eqid N K = N K
7 1 4 5 6 symgfixelsi K N Q q P | q K = K Q N K Base S
8 7 adantll N Fin K N Q q P | q K = K Q N K Base S
9 diffi N Fin N K Fin
10 9 ad2antrr N Fin K N Q q P | q K = K N K Fin
11 eqid Base S = Base S
12 3 11 2 psgnfitr N K Fin Q N K Base S w Word T Q N K = S w
13 10 12 syl N Fin K N Q q P | q K = K Q N K Base S w Word T Q N K = S w
14 8 13 mpbid N Fin K N Q q P | q K = K w Word T Q N K = S w
15 14 ex N Fin K N Q q P | q K = K w Word T Q N K = S w