Metamath Proof Explorer


Theorem psgnfix2

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P = Base SymGrp N
psgnfix.t T = ran pmTrsp N K
psgnfix.s S = SymGrp N K
psgnfix.z Z = SymGrp N
psgnfix.r R = ran pmTrsp N
Assertion psgnfix2 N Fin K N Q q P | q K = K w Word R Q = Z w

Proof

Step Hyp Ref Expression
1 psgnfix.p P = Base SymGrp N
2 psgnfix.t T = ran pmTrsp N K
3 psgnfix.s S = SymGrp N K
4 psgnfix.z Z = SymGrp N
5 psgnfix.r R = ran pmTrsp N
6 elrabi Q q P | q K = K Q P
7 6 adantl N Fin K N Q q P | q K = K Q P
8 4 fveq2i Base Z = Base SymGrp N
9 1 8 eqtr4i P = Base Z
10 4 9 5 psgnfitr N Fin Q P w Word R Q = Z w
11 10 bicomd N Fin w Word R Q = Z w Q P
12 11 ad2antrr N Fin K N Q q P | q K = K w Word R Q = Z w Q P
13 7 12 mpbird N Fin K N Q q P | q K = K w Word R Q = Z w
14 13 ex N Fin K N Q q P | q K = K w Word R Q = Z w