Metamath Proof Explorer


Theorem psgnfix2

Description: A permutation of a finite set fixing one element is generated by transpositions not involving the fixed element. (Contributed by AV, 17-Jan-2019)

Ref Expression
Hypotheses psgnfix.p P=BaseSymGrpN
psgnfix.t T=ranpmTrspNK
psgnfix.s S=SymGrpNK
psgnfix.z Z=SymGrpN
psgnfix.r R=ranpmTrspN
Assertion psgnfix2 NFinKNQqP|qK=KwWordRQ=Zw

Proof

Step Hyp Ref Expression
1 psgnfix.p P=BaseSymGrpN
2 psgnfix.t T=ranpmTrspNK
3 psgnfix.s S=SymGrpNK
4 psgnfix.z Z=SymGrpN
5 psgnfix.r R=ranpmTrspN
6 elrabi QqP|qK=KQP
7 6 adantl NFinKNQqP|qK=KQP
8 4 fveq2i BaseZ=BaseSymGrpN
9 1 8 eqtr4i P=BaseZ
10 4 9 5 psgnfitr NFinQPwWordRQ=Zw
11 10 bicomd NFinwWordRQ=ZwQP
12 11 ad2antrr NFinKNQqP|qK=KwWordRQ=ZwQP
13 7 12 mpbird NFinKNQqP|qK=KwWordRQ=Zw
14 13 ex NFinKNQqP|qK=KwWordRQ=Zw