Metamath Proof Explorer


Theorem psgninv

Description: The sign of a permutation equals the sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses psgninv.s S = SymGrp D
psgninv.n N = pmSgn D
psgninv.p P = Base S
Assertion psgninv D Fin F P N F -1 = N F

Proof

Step Hyp Ref Expression
1 psgninv.s S = SymGrp D
2 psgninv.n N = pmSgn D
3 psgninv.p P = Base S
4 eqid mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 1 1
5 1 2 4 psgnghm2 D Fin N S GrpHom mulGrp fld 𝑠 1 1
6 eqid inv g S = inv g S
7 eqid inv g mulGrp fld 𝑠 1 1 = inv g mulGrp fld 𝑠 1 1
8 3 6 7 ghminv N S GrpHom mulGrp fld 𝑠 1 1 F P N inv g S F = inv g mulGrp fld 𝑠 1 1 N F
9 5 8 sylan D Fin F P N inv g S F = inv g mulGrp fld 𝑠 1 1 N F
10 1 3 6 symginv F P inv g S F = F -1
11 10 adantl D Fin F P inv g S F = F -1
12 11 fveq2d D Fin F P N inv g S F = N F -1
13 eqid mulGrp fld 𝑠 0 = mulGrp fld 𝑠 0
14 13 cnmsgnsubg 1 1 SubGrp mulGrp fld 𝑠 0
15 4 cnmsgnbas 1 1 = Base mulGrp fld 𝑠 1 1
16 3 15 ghmf N S GrpHom mulGrp fld 𝑠 1 1 N : P 1 1
17 5 16 syl D Fin N : P 1 1
18 17 ffvelrnda D Fin F P N F 1 1
19 cnex V
20 19 difexi 0 V
21 ax-1cn 1
22 ax-1ne0 1 0
23 eldifsn 1 0 1 1 0
24 21 22 23 mpbir2an 1 0
25 neg1cn 1
26 neg1ne0 1 0
27 eldifsn 1 0 1 1 0
28 25 26 27 mpbir2an 1 0
29 prssi 1 0 1 0 1 1 0
30 24 28 29 mp2an 1 1 0
31 ressabs 0 V 1 1 0 mulGrp fld 𝑠 0 𝑠 1 1 = mulGrp fld 𝑠 1 1
32 20 30 31 mp2an mulGrp fld 𝑠 0 𝑠 1 1 = mulGrp fld 𝑠 1 1
33 32 eqcomi mulGrp fld 𝑠 1 1 = mulGrp fld 𝑠 0 𝑠 1 1
34 cnfldbas = Base fld
35 cnfld0 0 = 0 fld
36 cndrng fld DivRing
37 34 35 36 drngui 0 = Unit fld
38 eqid inv r fld = inv r fld
39 37 13 38 invrfval inv r fld = inv g mulGrp fld 𝑠 0
40 33 39 7 subginv 1 1 SubGrp mulGrp fld 𝑠 0 N F 1 1 inv r fld N F = inv g mulGrp fld 𝑠 1 1 N F
41 14 18 40 sylancr D Fin F P inv r fld N F = inv g mulGrp fld 𝑠 1 1 N F
42 30 18 sselid D Fin F P N F 0
43 eldifsn N F 0 N F N F 0
44 42 43 sylib D Fin F P N F N F 0
45 cnfldinv N F N F 0 inv r fld N F = 1 N F
46 44 45 syl D Fin F P inv r fld N F = 1 N F
47 41 46 eqtr3d D Fin F P inv g mulGrp fld 𝑠 1 1 N F = 1 N F
48 9 12 47 3eqtr3d D Fin F P N F -1 = 1 N F
49 fvex N F V
50 49 elpr N F 1 1 N F = 1 N F = 1
51 1div1e1 1 1 = 1
52 oveq2 N F = 1 1 N F = 1 1
53 id N F = 1 N F = 1
54 51 52 53 3eqtr4a N F = 1 1 N F = N F
55 divneg2 1 1 1 0 1 1 = 1 1
56 21 21 22 55 mp3an 1 1 = 1 1
57 51 negeqi 1 1 = 1
58 56 57 eqtr3i 1 1 = 1
59 oveq2 N F = 1 1 N F = 1 1
60 id N F = 1 N F = 1
61 58 59 60 3eqtr4a N F = 1 1 N F = N F
62 54 61 jaoi N F = 1 N F = 1 1 N F = N F
63 50 62 sylbi N F 1 1 1 N F = N F
64 18 63 syl D Fin F P 1 N F = N F
65 48 64 eqtrd D Fin F P N F -1 = N F