Metamath Proof Explorer


Theorem psgnodpmr

Description: If a permutation has sign -1 it is odd (not even). (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses evpmss.s S = SymGrp D
evpmss.p P = Base S
psgnevpmb.n N = pmSgn D
Assertion psgnodpmr D Fin F P N F = 1 F P pmEven D

Proof

Step Hyp Ref Expression
1 evpmss.s S = SymGrp D
2 evpmss.p P = Base S
3 psgnevpmb.n N = pmSgn D
4 simp2 D Fin F P N F = 1 F P
5 1 2 3 psgnevpm D Fin F pmEven D N F = 1
6 5 ex D Fin F pmEven D N F = 1
7 6 adantr D Fin F P F pmEven D N F = 1
8 neg1rr 1
9 neg1lt0 1 < 0
10 0lt1 0 < 1
11 0re 0
12 1re 1
13 8 11 12 lttri 1 < 0 0 < 1 1 < 1
14 9 10 13 mp2an 1 < 1
15 8 14 gtneii 1 1
16 neeq1 N F = 1 N F 1 1 1
17 15 16 mpbiri N F = 1 N F 1
18 7 17 syl6 D Fin F P F pmEven D N F 1
19 18 necon2bd D Fin F P N F = 1 ¬ F pmEven D
20 19 3impia D Fin F P N F = 1 ¬ F pmEven D
21 4 20 eldifd D Fin F P N F = 1 F P pmEven D