Metamath Proof Explorer


Theorem psgnprfval1

Description: The permutation sign of the identity for a pair. (Contributed by AV, 11-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0 D = 1 2
psgnprfval.g G = SymGrp D
psgnprfval.b B = Base G
psgnprfval.t T = ran pmTrsp D
psgnprfval.n N = pmSgn D
Assertion psgnprfval1 N 1 1 2 2 = 1

Proof

Step Hyp Ref Expression
1 psgnprfval.0 D = 1 2
2 psgnprfval.g G = SymGrp D
3 psgnprfval.b B = Base G
4 psgnprfval.t T = ran pmTrsp D
5 psgnprfval.n N = pmSgn D
6 prex 1 2 V
7 1 6 eqeltri D V
8 2 symgid D V I D = 0 G
9 7 8 ax-mp I D = 0 G
10 9 gsum0 G = I D
11 reseq2 D = 1 2 I D = I 1 2
12 1ex 1 V
13 2nn 2
14 residpr 1 V 2 I 1 2 = 1 1 2 2
15 12 13 14 mp2an I 1 2 = 1 1 2 2
16 11 15 eqtrdi D = 1 2 I D = 1 1 2 2
17 1 16 ax-mp I D = 1 1 2 2
18 10 17 eqtr2i 1 1 2 2 = G
19 18 fveq2i N 1 1 2 2 = N G
20 wrd0 Word T
21 2 4 5 psgnvalii D V Word T N G = 1
22 7 20 21 mp2an N G = 1
23 hash0 = 0
24 23 oveq2i 1 = 1 0
25 neg1cn 1
26 exp0 1 1 0 = 1
27 25 26 ax-mp 1 0 = 1
28 24 27 eqtri 1 = 1
29 19 22 28 3eqtri N 1 1 2 2 = 1