Metamath Proof Explorer


Theorem psgnprfval2

Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018)

Ref Expression
Hypotheses psgnprfval.0 D = 1 2
psgnprfval.g G = SymGrp D
psgnprfval.b B = Base G
psgnprfval.t T = ran pmTrsp D
psgnprfval.n N = pmSgn D
Assertion psgnprfval2 N 1 2 2 1 = 1

Proof

Step Hyp Ref Expression
1 psgnprfval.0 D = 1 2
2 psgnprfval.g G = SymGrp D
3 psgnprfval.b B = Base G
4 psgnprfval.t T = ran pmTrsp D
5 psgnprfval.n N = pmSgn D
6 prex 1 2 2 1 V
7 6 snid 1 2 2 1 1 2 2 1
8 1 fveq2i pmTrsp D = pmTrsp 1 2
9 8 rneqi ran pmTrsp D = ran pmTrsp 1 2
10 pmtrprfvalrn ran pmTrsp 1 2 = 1 2 2 1
11 9 10 eqtri ran pmTrsp D = 1 2 2 1
12 7 11 eleqtrri 1 2 2 1 ran pmTrsp D
13 12 4 eleqtrri 1 2 2 1 T
14 2 4 5 psgnpmtr 1 2 2 1 T N 1 2 2 1 = 1
15 13 14 ax-mp N 1 2 2 1 = 1