Metamath Proof Explorer


Theorem psgnran

Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses psgnran.p P = Base SymGrp N
psgnran.s S = pmSgn N
Assertion psgnran N Fin Q P S Q 1 1

Proof

Step Hyp Ref Expression
1 psgnran.p P = Base SymGrp N
2 psgnran.s S = pmSgn N
3 eqid SymGrp N = SymGrp N
4 3 1 sygbasnfpfi N Fin Q P dom Q I Fin
5 4 ex N Fin Q P dom Q I Fin
6 5 pm4.71d N Fin Q P Q P dom Q I Fin
7 3 2 1 psgneldm Q dom S Q P dom Q I Fin
8 6 7 bitr4di N Fin Q P Q dom S
9 eqid ran pmTrsp N = ran pmTrsp N
10 3 9 2 psgnvali Q dom S w Word ran pmTrsp N Q = SymGrp N w S Q = 1 w
11 lencl w Word ran pmTrsp N w 0
12 11 nn0zd w Word ran pmTrsp N w
13 m1expcl2 w 1 w 1 1
14 prcom 1 1 = 1 1
15 13 14 eleqtrdi w 1 w 1 1
16 12 15 syl w Word ran pmTrsp N 1 w 1 1
17 16 adantl N Fin w Word ran pmTrsp N 1 w 1 1
18 eleq1a 1 w 1 1 S Q = 1 w S Q 1 1
19 17 18 syl N Fin w Word ran pmTrsp N S Q = 1 w S Q 1 1
20 19 adantld N Fin w Word ran pmTrsp N Q = SymGrp N w S Q = 1 w S Q 1 1
21 20 rexlimdva N Fin w Word ran pmTrsp N Q = SymGrp N w S Q = 1 w S Q 1 1
22 10 21 syl5 N Fin Q dom S S Q 1 1
23 8 22 sylbid N Fin Q P S Q 1 1
24 23 imp N Fin Q P S Q 1 1