Metamath Proof Explorer


Theorem psgnsn

Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019)

Ref Expression
Hypotheses psgnsn.0 D = A
psgnsn.g G = SymGrp D
psgnsn.b B = Base G
psgnsn.n N = pmSgn D
Assertion psgnsn A V X B N X = 1

Proof

Step Hyp Ref Expression
1 psgnsn.0 D = A
2 psgnsn.g G = SymGrp D
3 psgnsn.b B = Base G
4 psgnsn.n N = pmSgn D
5 eqid 0 G = 0 G
6 5 gsum0 G = 0 G
7 2 3 1 symg1bas A V B = A A
8 7 eleq2d A V X B X A A
9 8 biimpa A V X B X A A
10 elsni X A A X = A A
11 1 reseq2i I D = I A
12 snex A V
13 12 snid A A
14 1 13 eqeltri D A
15 2 symgid D A I D = 0 G
16 14 15 mp1i A V I D = 0 G
17 restidsing I A = A × A
18 xpsng A V A V A × A = A A
19 18 anidms A V A × A = A A
20 17 19 eqtrid A V I A = A A
21 11 16 20 3eqtr3a A V 0 G = A A
22 21 adantr A V X B 0 G = A A
23 id A A = X A A = X
24 23 eqcoms X = A A A A = X
25 22 24 sylan9eqr X = A A A V X B 0 G = X
26 25 ex X = A A A V X B 0 G = X
27 10 26 syl X A A A V X B 0 G = X
28 9 27 mpcom A V X B 0 G = X
29 6 28 eqtr2id A V X B X = G
30 29 fveq2d A V X B N X = N G
31 1 12 eqeltri D V
32 wrd0 Word
33 31 32 pm3.2i D V Word
34 1 fveq2i pmTrsp D = pmTrsp A
35 pmtrsn pmTrsp A =
36 34 35 eqtri pmTrsp D =
37 36 rneqi ran pmTrsp D = ran
38 rn0 ran =
39 37 38 eqtr2i = ran pmTrsp D
40 2 39 4 psgnvalii D V Word N G = 1
41 33 40 mp1i A V X B N G = 1
42 hash0 = 0
43 42 oveq2i 1 = 1 0
44 neg1cn 1
45 exp0 1 1 0 = 1
46 44 45 ax-mp 1 0 = 1
47 43 46 eqtri 1 = 1
48 47 a1i A V X B 1 = 1
49 30 41 48 3eqtrd A V X B N X = 1