Metamath Proof Explorer


Theorem psgnunilem2

Description: Lemma for psgnuni . Induction step for moving a transposition as far to the right as possible. (Contributed by Stefan O'Rear, 24-Aug-2015) (Revised by Mario Carneiro, 28-Feb-2016)

Ref Expression
Hypotheses psgnunilem2.g G = SymGrp D
psgnunilem2.t T = ran pmTrsp D
psgnunilem2.d φ D V
psgnunilem2.w φ W Word T
psgnunilem2.id φ G W = I D
psgnunilem2.l φ W = L
psgnunilem2.ix φ I 0 ..^ L
psgnunilem2.a φ A dom W I I
psgnunilem2.al φ k 0 ..^ I ¬ A dom W k I
psgnunilem2.in φ ¬ x Word T x = L 2 G x = I D
Assertion psgnunilem2 φ w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I

Proof

Step Hyp Ref Expression
1 psgnunilem2.g G = SymGrp D
2 psgnunilem2.t T = ran pmTrsp D
3 psgnunilem2.d φ D V
4 psgnunilem2.w φ W Word T
5 psgnunilem2.id φ G W = I D
6 psgnunilem2.l φ W = L
7 psgnunilem2.ix φ I 0 ..^ L
8 psgnunilem2.a φ A dom W I I
9 psgnunilem2.al φ k 0 ..^ I ¬ A dom W k I
10 psgnunilem2.in φ ¬ x Word T x = L 2 G x = I D
11 wrd0 Word T
12 splcl W Word T Word T W splice I I + 2 Word T
13 4 11 12 sylancl φ W splice I I + 2 Word T
14 13 adantr φ W I W I + 1 = I D W splice I I + 2 Word T
15 fzossfz 0 ..^ L 0 L
16 15 7 sselid φ I 0 L
17 elfznn0 I 0 L I 0
18 16 17 syl φ I 0
19 2nn0 2 0
20 nn0addcl I 0 2 0 I + 2 0
21 18 19 20 sylancl φ I + 2 0
22 18 nn0red φ I
23 nn0addge1 I 2 0 I I + 2
24 22 19 23 sylancl φ I I + 2
25 elfz2nn0 I 0 I + 2 I 0 I + 2 0 I I + 2
26 18 21 24 25 syl3anbrc φ I 0 I + 2
27 1 2 3 4 5 6 7 8 9 psgnunilem5 φ I + 1 0 ..^ L
28 fzofzp1 I + 1 0 ..^ L I + 1 + 1 0 L
29 27 28 syl φ I + 1 + 1 0 L
30 df-2 2 = 1 + 1
31 30 oveq2i I + 2 = I + 1 + 1
32 18 nn0cnd φ I
33 1cnd φ 1
34 32 33 33 addassd φ I + 1 + 1 = I + 1 + 1
35 31 34 eqtr4id φ I + 2 = I + 1 + 1
36 6 oveq2d φ 0 W = 0 L
37 29 35 36 3eltr4d φ I + 2 0 W
38 11 a1i φ Word T
39 4 26 37 38 spllen φ W splice I I + 2 = W + - I + 2 - I
40 hash0 = 0
41 40 oveq1i I + 2 - I = 0 I + 2 - I
42 df-neg I + 2 - I = 0 I + 2 - I
43 41 42 eqtr4i I + 2 - I = I + 2 - I
44 2cn 2
45 pncan2 I 2 I + 2 - I = 2
46 32 44 45 sylancl φ I + 2 - I = 2
47 46 negeqd φ I + 2 - I = 2
48 43 47 eqtrid φ I + 2 - I = 2
49 6 48 oveq12d φ W + - I + 2 - I = L + -2
50 elfzel2 I 0 L L
51 16 50 syl φ L
52 51 zcnd φ L
53 negsub L 2 L + -2 = L 2
54 52 44 53 sylancl φ L + -2 = L 2
55 39 49 54 3eqtrd φ W splice I I + 2 = L 2
56 55 adantr φ W I W I + 1 = I D W splice I I + 2 = L 2
57 splid W Word T I 0 I + 2 I + 2 0 W W splice I I + 2 W substr I I + 2 = W
58 4 26 37 57 syl12anc φ W splice I I + 2 W substr I I + 2 = W
59 58 oveq2d φ G W splice I I + 2 W substr I I + 2 = G W
60 59 adantr φ W I W I + 1 = I D G W splice I I + 2 W substr I I + 2 = G W
61 eqid Base G = Base G
62 1 symggrp D V G Grp
63 3 62 syl φ G Grp
64 63 grpmndd φ G Mnd
65 64 adantr φ W I W I + 1 = I D G Mnd
66 2 1 61 symgtrf T Base G
67 sswrd T Base G Word T Word Base G
68 66 67 ax-mp Word T Word Base G
69 68 4 sselid φ W Word Base G
70 69 adantr φ W I W I + 1 = I D W Word Base G
71 26 adantr φ W I W I + 1 = I D I 0 I + 2
72 37 adantr φ W I W I + 1 = I D I + 2 0 W
73 swrdcl W Word Base G W substr I I + 2 Word Base G
74 69 73 syl φ W substr I I + 2 Word Base G
75 74 adantr φ W I W I + 1 = I D W substr I I + 2 Word Base G
76 wrd0 Word Base G
77 76 a1i φ W I W I + 1 = I D Word Base G
78 6 oveq2d φ 0 ..^ W = 0 ..^ L
79 27 78 eleqtrrd φ I + 1 0 ..^ W
80 swrds2 W Word T I 0 I + 1 0 ..^ W W substr I I + 2 = ⟨“ W I W I + 1 ”⟩
81 4 18 79 80 syl3anc φ W substr I I + 2 = ⟨“ W I W I + 1 ”⟩
82 81 oveq2d φ G W substr I I + 2 = G ⟨“ W I W I + 1 ”⟩
83 wrdf W Word T W : 0 ..^ W T
84 4 83 syl φ W : 0 ..^ W T
85 78 feq2d φ W : 0 ..^ W T W : 0 ..^ L T
86 84 85 mpbid φ W : 0 ..^ L T
87 86 7 ffvelrnd φ W I T
88 66 87 sselid φ W I Base G
89 86 27 ffvelrnd φ W I + 1 T
90 66 89 sselid φ W I + 1 Base G
91 eqid + G = + G
92 61 91 gsumws2 G Mnd W I Base G W I + 1 Base G G ⟨“ W I W I + 1 ”⟩ = W I + G W I + 1
93 64 88 90 92 syl3anc φ G ⟨“ W I W I + 1 ”⟩ = W I + G W I + 1
94 1 61 91 symgov W I Base G W I + 1 Base G W I + G W I + 1 = W I W I + 1
95 88 90 94 syl2anc φ W I + G W I + 1 = W I W I + 1
96 82 93 95 3eqtrd φ G W substr I I + 2 = W I W I + 1
97 96 adantr φ W I W I + 1 = I D G W substr I I + 2 = W I W I + 1
98 simpr φ W I W I + 1 = I D W I W I + 1 = I D
99 1 symgid D V I D = 0 G
100 3 99 syl φ I D = 0 G
101 eqid 0 G = 0 G
102 101 gsum0 G = 0 G
103 100 102 eqtr4di φ I D = G
104 103 adantr φ W I W I + 1 = I D I D = G
105 97 98 104 3eqtrd φ W I W I + 1 = I D G W substr I I + 2 = G
106 61 65 70 71 72 75 77 105 gsumspl φ W I W I + 1 = I D G W splice I I + 2 W substr I I + 2 = G W splice I I + 2
107 5 adantr φ W I W I + 1 = I D G W = I D
108 60 106 107 3eqtr3d φ W I W I + 1 = I D G W splice I I + 2 = I D
109 fveqeq2 x = W splice I I + 2 x = L 2 W splice I I + 2 = L 2
110 oveq2 x = W splice I I + 2 G x = G W splice I I + 2
111 110 eqeq1d x = W splice I I + 2 G x = I D G W splice I I + 2 = I D
112 109 111 anbi12d x = W splice I I + 2 x = L 2 G x = I D W splice I I + 2 = L 2 G W splice I I + 2 = I D
113 112 rspcev W splice I I + 2 Word T W splice I I + 2 = L 2 G W splice I I + 2 = I D x Word T x = L 2 G x = I D
114 14 56 108 113 syl12anc φ W I W I + 1 = I D x Word T x = L 2 G x = I D
115 10 adantr φ W I W I + 1 = I D ¬ x Word T x = L 2 G x = I D
116 114 115 pm2.21dd φ W I W I + 1 = I D w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
117 116 ex φ W I W I + 1 = I D w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
118 4 adantr φ r T s T W Word T
119 simprl φ r T s T r T
120 simprr φ r T s T s T
121 119 120 s2cld φ r T s T ⟨“ rs ”⟩ Word T
122 splcl W Word T ⟨“ rs ”⟩ Word T W splice I I + 2 ⟨“ rs ”⟩ Word T
123 118 121 122 syl2anc φ r T s T W splice I I + 2 ⟨“ rs ”⟩ Word T
124 123 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W splice I I + 2 ⟨“ rs ”⟩ Word T
125 64 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G Mnd
126 69 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W Word Base G
127 26 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I I 0 I + 2
128 37 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I I + 2 0 W
129 68 121 sselid φ r T s T ⟨“ rs ”⟩ Word Base G
130 129 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I ⟨“ rs ”⟩ Word Base G
131 74 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W substr I I + 2 Word Base G
132 simprr1 φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W I W I + 1 = r s
133 96 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W substr I I + 2 = W I W I + 1
134 64 adantr φ r T s T G Mnd
135 66 a1i φ T Base G
136 135 sselda φ r T r Base G
137 136 adantrr φ r T s T r Base G
138 135 sselda φ s T s Base G
139 138 adantrl φ r T s T s Base G
140 61 91 gsumws2 G Mnd r Base G s Base G G ⟨“ rs ”⟩ = r + G s
141 134 137 139 140 syl3anc φ r T s T G ⟨“ rs ”⟩ = r + G s
142 1 61 91 symgov r Base G s Base G r + G s = r s
143 137 139 142 syl2anc φ r T s T r + G s = r s
144 141 143 eqtrd φ r T s T G ⟨“ rs ”⟩ = r s
145 144 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G ⟨“ rs ”⟩ = r s
146 132 133 145 3eqtr4rd φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G ⟨“ rs ”⟩ = G W substr I I + 2
147 61 125 126 127 128 130 131 146 gsumspl φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W splice I I + 2 ⟨“ rs ”⟩ = G W splice I I + 2 W substr I I + 2
148 59 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W splice I I + 2 W substr I I + 2 = G W
149 5 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W = I D
150 147 148 149 3eqtrd φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W splice I I + 2 ⟨“ rs ”⟩ = I D
151 26 adantr φ r T s T I 0 I + 2
152 37 adantr φ r T s T I + 2 0 W
153 118 151 152 121 spllen φ r T s T W splice I I + 2 ⟨“ rs ”⟩ = W + ⟨“ rs ”⟩ - I + 2 - I
154 s2len ⟨“ rs ”⟩ = 2
155 154 oveq1i ⟨“ rs ”⟩ I + 2 - I = 2 I + 2 - I
156 46 oveq2d φ 2 I + 2 - I = 2 2
157 44 subidi 2 2 = 0
158 156 157 eqtrdi φ 2 I + 2 - I = 0
159 155 158 eqtrid φ ⟨“ rs ”⟩ I + 2 - I = 0
160 159 oveq2d φ W + ⟨“ rs ”⟩ - I + 2 - I = W + 0
161 6 52 eqeltrd φ W
162 161 addid1d φ W + 0 = W
163 160 162 6 3eqtrd φ W + ⟨“ rs ”⟩ - I + 2 - I = L
164 163 adantr φ r T s T W + ⟨“ rs ”⟩ - I + 2 - I = L
165 153 164 eqtrd φ r T s T W splice I I + 2 ⟨“ rs ”⟩ = L
166 165 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W splice I I + 2 ⟨“ rs ”⟩ = L
167 150 166 jca φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I G W splice I I + 2 ⟨“ rs ”⟩ = I D W splice I I + 2 ⟨“ rs ”⟩ = L
168 27 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I I + 1 0 ..^ L
169 simprr2 φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I A dom s I
170 1nn0 1 0
171 2nn 2
172 1lt2 1 < 2
173 elfzo0 1 0 ..^ 2 1 0 2 1 < 2
174 170 171 172 173 mpbir3an 1 0 ..^ 2
175 154 oveq2i 0 ..^ ⟨“ rs ”⟩ = 0 ..^ 2
176 174 175 eleqtrri 1 0 ..^ ⟨“ rs ”⟩
177 176 a1i φ r T s T 1 0 ..^ ⟨“ rs ”⟩
178 118 151 152 121 177 splfv2a φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I + 1 = ⟨“ rs ”⟩ 1
179 s2fv1 s T ⟨“ rs ”⟩ 1 = s
180 179 ad2antll φ r T s T ⟨“ rs ”⟩ 1 = s
181 178 180 eqtrd φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I + 1 = s
182 181 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W splice I I + 2 ⟨“ rs ”⟩ I + 1 = s
183 182 difeq1d φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I W splice I I + 2 ⟨“ rs ”⟩ I + 1 I = s I
184 183 dmeqd φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I = dom s I
185 169 184 eleqtrrd φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I
186 fzosplitsni I 0 j 0 ..^ I + 1 j 0 ..^ I j = I
187 nn0uz 0 = 0
188 186 187 eleq2s I 0 j 0 ..^ I + 1 j 0 ..^ I j = I
189 18 188 syl φ j 0 ..^ I + 1 j 0 ..^ I j = I
190 189 adantr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j 0 ..^ I + 1 j 0 ..^ I j = I
191 fveq2 k = j W k = W j
192 191 difeq1d k = j W k I = W j I
193 192 dmeqd k = j dom W k I = dom W j I
194 193 eleq2d k = j A dom W k I A dom W j I
195 194 notbid k = j ¬ A dom W k I ¬ A dom W j I
196 195 rspccva k 0 ..^ I ¬ A dom W k I j 0 ..^ I ¬ A dom W j I
197 9 196 sylan φ j 0 ..^ I ¬ A dom W j I
198 197 adantlr φ r T s T j 0 ..^ I ¬ A dom W j I
199 4 ad2antrr φ r T s T j 0 ..^ I W Word T
200 26 ad2antrr φ r T s T j 0 ..^ I I 0 I + 2
201 37 ad2antrr φ r T s T j 0 ..^ I I + 2 0 W
202 121 adantr φ r T s T j 0 ..^ I ⟨“ rs ”⟩ Word T
203 simpr φ r T s T j 0 ..^ I j 0 ..^ I
204 199 200 201 202 203 splfv1 φ r T s T j 0 ..^ I W splice I I + 2 ⟨“ rs ”⟩ j = W j
205 204 difeq1d φ r T s T j 0 ..^ I W splice I I + 2 ⟨“ rs ”⟩ j I = W j I
206 205 dmeqd φ r T s T j 0 ..^ I dom W splice I I + 2 ⟨“ rs ”⟩ j I = dom W j I
207 198 206 neleqtrrd φ r T s T j 0 ..^ I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
208 207 ex φ r T s T j 0 ..^ I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
209 208 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j 0 ..^ I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
210 simprr3 φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I ¬ A dom r I
211 0nn0 0 0
212 2pos 0 < 2
213 elfzo0 0 0 ..^ 2 0 0 2 0 < 2
214 211 171 212 213 mpbir3an 0 0 ..^ 2
215 214 175 eleqtrri 0 0 ..^ ⟨“ rs ”⟩
216 215 a1i φ r T s T 0 0 ..^ ⟨“ rs ”⟩
217 118 151 152 121 216 splfv2a φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I + 0 = ⟨“ rs ”⟩ 0
218 32 addid1d φ I + 0 = I
219 218 adantr φ r T s T I + 0 = I
220 219 fveq2d φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I + 0 = W splice I I + 2 ⟨“ rs ”⟩ I
221 s2fv0 r T ⟨“ rs ”⟩ 0 = r
222 221 ad2antrl φ r T s T ⟨“ rs ”⟩ 0 = r
223 217 220 222 3eqtr3d φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I = r
224 223 difeq1d φ r T s T W splice I I + 2 ⟨“ rs ”⟩ I I = r I
225 224 dmeqd φ r T s T dom W splice I I + 2 ⟨“ rs ”⟩ I I = dom r I
226 225 eleq2d φ r T s T A dom W splice I I + 2 ⟨“ rs ”⟩ I I A dom r I
227 226 adantrr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I A dom W splice I I + 2 ⟨“ rs ”⟩ I I A dom r I
228 210 227 mtbird φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ I I
229 fveq2 j = I W splice I I + 2 ⟨“ rs ”⟩ j = W splice I I + 2 ⟨“ rs ”⟩ I
230 229 difeq1d j = I W splice I I + 2 ⟨“ rs ”⟩ j I = W splice I I + 2 ⟨“ rs ”⟩ I I
231 230 dmeqd j = I dom W splice I I + 2 ⟨“ rs ”⟩ j I = dom W splice I I + 2 ⟨“ rs ”⟩ I I
232 231 eleq2d j = I A dom W splice I I + 2 ⟨“ rs ”⟩ j I A dom W splice I I + 2 ⟨“ rs ”⟩ I I
233 232 notbid j = I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ I I
234 228 233 syl5ibrcom φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j = I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
235 209 234 jaod φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j 0 ..^ I j = I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
236 190 235 sylbid φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
237 236 ralrimiv φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
238 168 185 237 3jca φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I I + 1 0 ..^ L A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
239 oveq2 w = W splice I I + 2 ⟨“ rs ”⟩ G w = G W splice I I + 2 ⟨“ rs ”⟩
240 239 eqeq1d w = W splice I I + 2 ⟨“ rs ”⟩ G w = I D G W splice I I + 2 ⟨“ rs ”⟩ = I D
241 fveqeq2 w = W splice I I + 2 ⟨“ rs ”⟩ w = L W splice I I + 2 ⟨“ rs ”⟩ = L
242 240 241 anbi12d w = W splice I I + 2 ⟨“ rs ”⟩ G w = I D w = L G W splice I I + 2 ⟨“ rs ”⟩ = I D W splice I I + 2 ⟨“ rs ”⟩ = L
243 fveq1 w = W splice I I + 2 ⟨“ rs ”⟩ w I + 1 = W splice I I + 2 ⟨“ rs ”⟩ I + 1
244 243 difeq1d w = W splice I I + 2 ⟨“ rs ”⟩ w I + 1 I = W splice I I + 2 ⟨“ rs ”⟩ I + 1 I
245 244 dmeqd w = W splice I I + 2 ⟨“ rs ”⟩ dom w I + 1 I = dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I
246 245 eleq2d w = W splice I I + 2 ⟨“ rs ”⟩ A dom w I + 1 I A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I
247 fveq1 w = W splice I I + 2 ⟨“ rs ”⟩ w j = W splice I I + 2 ⟨“ rs ”⟩ j
248 247 difeq1d w = W splice I I + 2 ⟨“ rs ”⟩ w j I = W splice I I + 2 ⟨“ rs ”⟩ j I
249 248 dmeqd w = W splice I I + 2 ⟨“ rs ”⟩ dom w j I = dom W splice I I + 2 ⟨“ rs ”⟩ j I
250 249 eleq2d w = W splice I I + 2 ⟨“ rs ”⟩ A dom w j I A dom W splice I I + 2 ⟨“ rs ”⟩ j I
251 250 notbid w = W splice I I + 2 ⟨“ rs ”⟩ ¬ A dom w j I ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
252 251 ralbidv w = W splice I I + 2 ⟨“ rs ”⟩ j 0 ..^ I + 1 ¬ A dom w j I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
253 246 252 3anbi23d w = W splice I I + 2 ⟨“ rs ”⟩ I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I I + 1 0 ..^ L A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
254 242 253 anbi12d w = W splice I I + 2 ⟨“ rs ”⟩ G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I G W splice I I + 2 ⟨“ rs ”⟩ = I D W splice I I + 2 ⟨“ rs ”⟩ = L I + 1 0 ..^ L A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I
255 254 rspcev W splice I I + 2 ⟨“ rs ”⟩ Word T G W splice I I + 2 ⟨“ rs ”⟩ = I D W splice I I + 2 ⟨“ rs ”⟩ = L I + 1 0 ..^ L A dom W splice I I + 2 ⟨“ rs ”⟩ I + 1 I j 0 ..^ I + 1 ¬ A dom W splice I I + 2 ⟨“ rs ”⟩ j I w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
256 124 167 238 255 syl12anc φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
257 256 expr φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
258 257 rexlimdvva φ r T s T W I W I + 1 = r s A dom s I ¬ A dom r I w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I
259 2 3 87 89 8 psgnunilem1 φ W I W I + 1 = I D r T s T W I W I + 1 = r s A dom s I ¬ A dom r I
260 117 258 259 mpjaod φ w Word T G w = I D w = L I + 1 0 ..^ L A dom w I + 1 I j 0 ..^ I + 1 ¬ A dom w j I