Step |
Hyp |
Ref |
Expression |
1 |
|
psgnunilem4.g |
|
2 |
|
psgnunilem4.t |
|
3 |
|
psgnunilem4.d |
|
4 |
|
psgnunilem4.w1 |
|
5 |
|
psgnunilem4.w2 |
|
6 |
|
wrdfin |
|
7 |
|
hashcl |
|
8 |
4 6 7
|
3syl |
|
9 |
|
nn0uz |
|
10 |
8 9
|
eleqtrdi |
|
11 |
|
fveq2 |
|
12 |
|
hash0 |
|
13 |
11 12
|
eqtrdi |
|
14 |
13
|
oveq2d |
|
15 |
|
neg1cn |
|
16 |
|
exp0 |
|
17 |
15 16
|
ax-mp |
|
18 |
14 17
|
eqtrdi |
|
19 |
18
|
2a1d |
|
20 |
|
simpl1 |
|
21 |
20 3
|
syl |
|
22 |
|
simpl3l |
|
23 |
|
eqidd |
|
24 |
|
wrdfin |
|
25 |
22 24
|
syl |
|
26 |
|
simpl2 |
|
27 |
|
hashnncl |
|
28 |
27
|
biimpar |
|
29 |
25 26 28
|
syl2anc |
|
30 |
|
simpl3r |
|
31 |
|
fveqeq2 |
|
32 |
|
oveq2 |
|
33 |
32
|
eqeq1d |
|
34 |
31 33
|
anbi12d |
|
35 |
34
|
cbvrexvw |
|
36 |
35
|
notbii |
|
37 |
36
|
biimpi |
|
38 |
37
|
adantl |
|
39 |
1 2 21 22 23 29 30 38
|
psgnunilem3 |
|
40 |
|
iman |
|
41 |
39 40
|
mpbir |
|
42 |
|
df-rex |
|
43 |
41 42
|
sylib |
|
44 |
|
simprl |
|
45 |
|
simprrr |
|
46 |
44 45
|
jca |
|
47 |
|
wrdfin |
|
48 |
|
hashcl |
|
49 |
44 47 48
|
3syl |
|
50 |
|
simp3l |
|
51 |
50 24
|
syl |
|
52 |
|
simp2 |
|
53 |
51 52 28
|
syl2anc |
|
54 |
53
|
adantr |
|
55 |
|
simprrl |
|
56 |
54
|
nnred |
|
57 |
|
2rp |
|
58 |
|
ltsubrp |
|
59 |
56 57 58
|
sylancl |
|
60 |
55 59
|
eqbrtrd |
|
61 |
|
elfzo0 |
|
62 |
49 54 60 61
|
syl3anbrc |
|
63 |
|
id |
|
64 |
63
|
com13 |
|
65 |
46 62 64
|
sylc |
|
66 |
55
|
oveq2d |
|
67 |
15
|
a1i |
|
68 |
|
neg1ne0 |
|
69 |
68
|
a1i |
|
70 |
|
2z |
|
71 |
70
|
a1i |
|
72 |
54
|
nnzd |
|
73 |
67 69 71 72
|
expsubd |
|
74 |
|
neg1sqe1 |
|
75 |
74
|
oveq2i |
|
76 |
|
m1expcl |
|
77 |
76
|
zcnd |
|
78 |
72 77
|
syl |
|
79 |
78
|
div1d |
|
80 |
75 79
|
eqtrid |
|
81 |
66 73 80
|
3eqtrd |
|
82 |
81
|
eqeq1d |
|
83 |
65 82
|
sylibd |
|
84 |
83
|
ex |
|
85 |
84
|
com23 |
|
86 |
85
|
alimdv |
|
87 |
|
19.23v |
|
88 |
86 87
|
syl6ib |
|
89 |
43 88
|
mpid |
|
90 |
89
|
3exp |
|
91 |
90
|
com34 |
|
92 |
91
|
com12 |
|
93 |
92
|
impd |
|
94 |
19 93
|
pm2.61ine |
|
95 |
94
|
3adant2 |
|
96 |
|
eleq1 |
|
97 |
|
oveq2 |
|
98 |
97
|
eqeq1d |
|
99 |
96 98
|
anbi12d |
|
100 |
|
fveq2 |
|
101 |
100
|
oveq2d |
|
102 |
101
|
eqeq1d |
|
103 |
99 102
|
imbi12d |
|
104 |
|
eleq1 |
|
105 |
|
oveq2 |
|
106 |
105
|
eqeq1d |
|
107 |
104 106
|
anbi12d |
|
108 |
|
fveq2 |
|
109 |
108
|
oveq2d |
|
110 |
109
|
eqeq1d |
|
111 |
107 110
|
imbi12d |
|
112 |
4 10 95 103 111 100 108
|
uzindi |
|
113 |
4 5 112
|
mp2and |
|