Metamath Proof Explorer


Theorem psgnunilem4

Description: Lemma for psgnuni . An odd-length representation of the identity is impossible, as it could be repeatedly shortened to a length of 1, but a length 1 permutation must be a transposition. (Contributed by Stefan O'Rear, 25-Aug-2015)

Ref Expression
Hypotheses psgnunilem4.g G = SymGrp D
psgnunilem4.t T = ran pmTrsp D
psgnunilem4.d φ D V
psgnunilem4.w1 φ W Word T
psgnunilem4.w2 φ G W = I D
Assertion psgnunilem4 φ 1 W = 1

Proof

Step Hyp Ref Expression
1 psgnunilem4.g G = SymGrp D
2 psgnunilem4.t T = ran pmTrsp D
3 psgnunilem4.d φ D V
4 psgnunilem4.w1 φ W Word T
5 psgnunilem4.w2 φ G W = I D
6 wrdfin W Word T W Fin
7 hashcl W Fin W 0
8 4 6 7 3syl φ W 0
9 nn0uz 0 = 0
10 8 9 eleqtrdi φ W 0
11 fveq2 w = w =
12 hash0 = 0
13 11 12 eqtrdi w = w = 0
14 13 oveq2d w = 1 w = 1 0
15 neg1cn 1
16 exp0 1 1 0 = 1
17 15 16 ax-mp 1 0 = 1
18 14 17 eqtrdi w = 1 w = 1
19 18 2a1d w = φ x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
20 simpl1 φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D φ
21 20 3 syl φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D D V
22 simpl3l φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D w Word T
23 eqidd φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D w = w
24 wrdfin w Word T w Fin
25 22 24 syl φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D w Fin
26 simpl2 φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D w
27 hashnncl w Fin w w
28 27 biimpar w Fin w w
29 25 26 28 syl2anc φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D w
30 simpl3r φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D G w = I D
31 fveqeq2 x = y x = w 2 y = w 2
32 oveq2 x = y G x = G y
33 32 eqeq1d x = y G x = I D G y = I D
34 31 33 anbi12d x = y x = w 2 G x = I D y = w 2 G y = I D
35 34 cbvrexvw x Word T x = w 2 G x = I D y Word T y = w 2 G y = I D
36 35 notbii ¬ x Word T x = w 2 G x = I D ¬ y Word T y = w 2 G y = I D
37 36 biimpi ¬ x Word T x = w 2 G x = I D ¬ y Word T y = w 2 G y = I D
38 37 adantl φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D ¬ y Word T y = w 2 G y = I D
39 1 2 21 22 23 29 30 38 psgnunilem3 ¬ φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D
40 iman φ w w Word T G w = I D x Word T x = w 2 G x = I D ¬ φ w w Word T G w = I D ¬ x Word T x = w 2 G x = I D
41 39 40 mpbir φ w w Word T G w = I D x Word T x = w 2 G x = I D
42 df-rex x Word T x = w 2 G x = I D x x Word T x = w 2 G x = I D
43 41 42 sylib φ w w Word T G w = I D x x Word T x = w 2 G x = I D
44 simprl φ w w Word T G w = I D x Word T x = w 2 G x = I D x Word T
45 simprrr φ w w Word T G w = I D x Word T x = w 2 G x = I D G x = I D
46 44 45 jca φ w w Word T G w = I D x Word T x = w 2 G x = I D x Word T G x = I D
47 wrdfin x Word T x Fin
48 hashcl x Fin x 0
49 44 47 48 3syl φ w w Word T G w = I D x Word T x = w 2 G x = I D x 0
50 simp3l φ w w Word T G w = I D w Word T
51 50 24 syl φ w w Word T G w = I D w Fin
52 simp2 φ w w Word T G w = I D w
53 51 52 28 syl2anc φ w w Word T G w = I D w
54 53 adantr φ w w Word T G w = I D x Word T x = w 2 G x = I D w
55 simprrl φ w w Word T G w = I D x Word T x = w 2 G x = I D x = w 2
56 54 nnred φ w w Word T G w = I D x Word T x = w 2 G x = I D w
57 2rp 2 +
58 ltsubrp w 2 + w 2 < w
59 56 57 58 sylancl φ w w Word T G w = I D x Word T x = w 2 G x = I D w 2 < w
60 55 59 eqbrtrd φ w w Word T G w = I D x Word T x = w 2 G x = I D x < w
61 elfzo0 x 0 ..^ w x 0 w x < w
62 49 54 60 61 syl3anbrc φ w w Word T G w = I D x Word T x = w 2 G x = I D x 0 ..^ w
63 id x 0 ..^ w x Word T G x = I D 1 x = 1 x 0 ..^ w x Word T G x = I D 1 x = 1
64 63 com13 x Word T G x = I D x 0 ..^ w x 0 ..^ w x Word T G x = I D 1 x = 1 1 x = 1
65 46 62 64 sylc φ w w Word T G w = I D x Word T x = w 2 G x = I D x 0 ..^ w x Word T G x = I D 1 x = 1 1 x = 1
66 55 oveq2d φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 x = 1 w 2
67 15 a1i φ w w Word T G w = I D x Word T x = w 2 G x = I D 1
68 neg1ne0 1 0
69 68 a1i φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 0
70 2z 2
71 70 a1i φ w w Word T G w = I D x Word T x = w 2 G x = I D 2
72 54 nnzd φ w w Word T G w = I D x Word T x = w 2 G x = I D w
73 67 69 71 72 expsubd φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 w 2 = 1 w 1 2
74 neg1sqe1 1 2 = 1
75 74 oveq2i 1 w 1 2 = 1 w 1
76 m1expcl w 1 w
77 76 zcnd w 1 w
78 72 77 syl φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 w
79 78 div1d φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 w 1 = 1 w
80 75 79 eqtrid φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 w 1 2 = 1 w
81 66 73 80 3eqtrd φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 x = 1 w
82 81 eqeq1d φ w w Word T G w = I D x Word T x = w 2 G x = I D 1 x = 1 1 w = 1
83 65 82 sylibd φ w w Word T G w = I D x Word T x = w 2 G x = I D x 0 ..^ w x Word T G x = I D 1 x = 1 1 w = 1
84 83 ex φ w w Word T G w = I D x Word T x = w 2 G x = I D x 0 ..^ w x Word T G x = I D 1 x = 1 1 w = 1
85 84 com23 φ w w Word T G w = I D x 0 ..^ w x Word T G x = I D 1 x = 1 x Word T x = w 2 G x = I D 1 w = 1
86 85 alimdv φ w w Word T G w = I D x x 0 ..^ w x Word T G x = I D 1 x = 1 x x Word T x = w 2 G x = I D 1 w = 1
87 19.23v x x Word T x = w 2 G x = I D 1 w = 1 x x Word T x = w 2 G x = I D 1 w = 1
88 86 87 syl6ib φ w w Word T G w = I D x x 0 ..^ w x Word T G x = I D 1 x = 1 x x Word T x = w 2 G x = I D 1 w = 1
89 43 88 mpid φ w w Word T G w = I D x x 0 ..^ w x Word T G x = I D 1 x = 1 1 w = 1
90 89 3exp φ w w Word T G w = I D x x 0 ..^ w x Word T G x = I D 1 x = 1 1 w = 1
91 90 com34 φ w x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
92 91 com12 w φ x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
93 92 impd w φ x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
94 19 93 pm2.61ine φ x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
95 94 3adant2 φ w 0 W x x 0 ..^ w x Word T G x = I D 1 x = 1 w Word T G w = I D 1 w = 1
96 eleq1 w = x w Word T x Word T
97 oveq2 w = x G w = G x
98 97 eqeq1d w = x G w = I D G x = I D
99 96 98 anbi12d w = x w Word T G w = I D x Word T G x = I D
100 fveq2 w = x w = x
101 100 oveq2d w = x 1 w = 1 x
102 101 eqeq1d w = x 1 w = 1 1 x = 1
103 99 102 imbi12d w = x w Word T G w = I D 1 w = 1 x Word T G x = I D 1 x = 1
104 eleq1 w = W w Word T W Word T
105 oveq2 w = W G w = G W
106 105 eqeq1d w = W G w = I D G W = I D
107 104 106 anbi12d w = W w Word T G w = I D W Word T G W = I D
108 fveq2 w = W w = W
109 108 oveq2d w = W 1 w = 1 W
110 109 eqeq1d w = W 1 w = 1 1 W = 1
111 107 110 imbi12d w = W w Word T G w = I D 1 w = 1 W Word T G W = I D 1 W = 1
112 4 10 95 103 111 100 108 uzindi φ W Word T G W = I D 1 W = 1
113 4 5 112 mp2and φ 1 W = 1