| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psgnunilem2.g |
|
| 2 |
|
psgnunilem2.t |
|
| 3 |
|
psgnunilem2.d |
|
| 4 |
|
psgnunilem2.w |
|
| 5 |
|
psgnunilem2.id |
|
| 6 |
|
psgnunilem2.l |
|
| 7 |
|
psgnunilem2.ix |
|
| 8 |
|
psgnunilem2.a |
|
| 9 |
|
psgnunilem2.al |
|
| 10 |
|
noel |
|
| 11 |
5
|
difeq1d |
|
| 12 |
11
|
dmeqd |
|
| 13 |
|
resss |
|
| 14 |
|
ssdif0 |
|
| 15 |
13 14
|
mpbi |
|
| 16 |
15
|
dmeqi |
|
| 17 |
|
dm0 |
|
| 18 |
16 17
|
eqtri |
|
| 19 |
12 18
|
eqtrdi |
|
| 20 |
19
|
eleq2d |
|
| 21 |
10 20
|
mtbiri |
|
| 22 |
1
|
symggrp |
|
| 23 |
|
grpmnd |
|
| 24 |
3 22 23
|
3syl |
|
| 25 |
|
eqid |
|
| 26 |
2 1 25
|
symgtrf |
|
| 27 |
|
sswrd |
|
| 28 |
26 27
|
mp1i |
|
| 29 |
28 4
|
sseldd |
|
| 30 |
|
pfxcl |
|
| 31 |
29 30
|
syl |
|
| 32 |
25
|
gsumwcl |
|
| 33 |
24 31 32
|
syl2anc |
|
| 34 |
1 25
|
symgbasf1o |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
|
wrdf |
|
| 38 |
4 37
|
syl |
|
| 39 |
6
|
oveq2d |
|
| 40 |
7 39
|
eleqtrrd |
|
| 41 |
38 40
|
ffvelcdmd |
|
| 42 |
26 41
|
sselid |
|
| 43 |
1 25
|
symgbasf1o |
|
| 44 |
42 43
|
syl |
|
| 45 |
44
|
adantr |
|
| 46 |
1 25
|
symgsssg |
|
| 47 |
|
subgsubm |
|
| 48 |
3 46 47
|
3syl |
|
| 49 |
|
fzossfz |
|
| 50 |
49 7
|
sselid |
|
| 51 |
6
|
oveq2d |
|
| 52 |
50 51
|
eleqtrrd |
|
| 53 |
|
pfxmpt |
|
| 54 |
4 52 53
|
syl2anc |
|
| 55 |
|
difeq1 |
|
| 56 |
55
|
dmeqd |
|
| 57 |
56
|
sseq1d |
|
| 58 |
|
disj2 |
|
| 59 |
|
disjsn |
|
| 60 |
58 59
|
bitr3i |
|
| 61 |
57 60
|
bitrdi |
|
| 62 |
|
elfzuz3 |
|
| 63 |
50 62
|
syl |
|
| 64 |
6 63
|
eqeltrd |
|
| 65 |
|
fzoss2 |
|
| 66 |
64 65
|
syl |
|
| 67 |
66
|
sselda |
|
| 68 |
38
|
ffvelcdmda |
|
| 69 |
26 68
|
sselid |
|
| 70 |
67 69
|
syldan |
|
| 71 |
|
fveq2 |
|
| 72 |
71
|
difeq1d |
|
| 73 |
72
|
dmeqd |
|
| 74 |
73
|
eleq2d |
|
| 75 |
74
|
notbid |
|
| 76 |
75
|
cbvralvw |
|
| 77 |
9 76
|
sylib |
|
| 78 |
77
|
r19.21bi |
|
| 79 |
61 70 78
|
elrabd |
|
| 80 |
54 79
|
fmpt3d |
|
| 81 |
80
|
adantr |
|
| 82 |
|
iswrdi |
|
| 83 |
81 82
|
syl |
|
| 84 |
|
gsumwsubmcl |
|
| 85 |
48 83 84
|
syl2an2r |
|
| 86 |
|
difeq1 |
|
| 87 |
86
|
dmeqd |
|
| 88 |
87
|
sseq1d |
|
| 89 |
88
|
elrab |
|
| 90 |
89
|
simprbi |
|
| 91 |
|
disj2 |
|
| 92 |
|
disjsn |
|
| 93 |
91 92
|
bitr3i |
|
| 94 |
90 93
|
sylib |
|
| 95 |
85 94
|
syl |
|
| 96 |
8
|
adantr |
|
| 97 |
95 96
|
jca |
|
| 98 |
97
|
olcd |
|
| 99 |
|
excxor |
|
| 100 |
98 99
|
sylibr |
|
| 101 |
|
f1omvdco3 |
|
| 102 |
36 45 100 101
|
syl3anc |
|
| 103 |
|
elfzo0 |
|
| 104 |
103
|
simp2bi |
|
| 105 |
7 104
|
syl |
|
| 106 |
6 105
|
eqeltrd |
|
| 107 |
|
wrdfin |
|
| 108 |
|
hashnncl |
|
| 109 |
4 107 108
|
3syl |
|
| 110 |
106 109
|
mpbid |
|
| 111 |
110
|
adantr |
|
| 112 |
|
pfxlswccat |
|
| 113 |
112
|
eqcomd |
|
| 114 |
4 111 113
|
syl2an2r |
|
| 115 |
6
|
oveq1d |
|
| 116 |
115
|
adantr |
|
| 117 |
105
|
nncnd |
|
| 118 |
|
1cnd |
|
| 119 |
|
elfzoelz |
|
| 120 |
7 119
|
syl |
|
| 121 |
120
|
zcnd |
|
| 122 |
117 118 121
|
subadd2d |
|
| 123 |
122
|
biimpar |
|
| 124 |
116 123
|
eqtrd |
|
| 125 |
|
oveq2 |
|
| 126 |
125
|
adantl |
|
| 127 |
|
lsw |
|
| 128 |
4 127
|
syl |
|
| 129 |
|
fveq2 |
|
| 130 |
128 129
|
sylan9eq |
|
| 131 |
130
|
s1eqd |
|
| 132 |
126 131
|
oveq12d |
|
| 133 |
124 132
|
syldan |
|
| 134 |
114 133
|
eqtrd |
|
| 135 |
134
|
oveq2d |
|
| 136 |
42
|
s1cld |
|
| 137 |
|
eqid |
|
| 138 |
25 137
|
gsumccat |
|
| 139 |
24 31 136 138
|
syl3anc |
|
| 140 |
139
|
adantr |
|
| 141 |
25
|
gsumws1 |
|
| 142 |
42 141
|
syl |
|
| 143 |
142
|
oveq2d |
|
| 144 |
1 25 137
|
symgov |
|
| 145 |
33 42 144
|
syl2anc |
|
| 146 |
143 145
|
eqtrd |
|
| 147 |
146
|
adantr |
|
| 148 |
135 140 147
|
3eqtrd |
|
| 149 |
148
|
difeq1d |
|
| 150 |
149
|
dmeqd |
|
| 151 |
102 150
|
eleqtrrd |
|
| 152 |
21 151
|
mtand |
|
| 153 |
|
fzostep1 |
|
| 154 |
7 153
|
syl |
|
| 155 |
154
|
ord |
|
| 156 |
152 155
|
mt3d |
|