Metamath Proof Explorer


Theorem psgnval

Description: Value of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G = SymGrp D
psgnval.t T = ran pmTrsp D
psgnval.n N = pmSgn D
Assertion psgnval P dom N N P = ι s | w Word T P = G w s = 1 w

Proof

Step Hyp Ref Expression
1 psgnval.g G = SymGrp D
2 psgnval.t T = ran pmTrsp D
3 psgnval.n N = pmSgn D
4 eqeq1 t = P t = G w P = G w
5 4 anbi1d t = P t = G w s = 1 w P = G w s = 1 w
6 5 rexbidv t = P w Word T t = G w s = 1 w w Word T P = G w s = 1 w
7 6 iotabidv t = P ι s | w Word T t = G w s = 1 w = ι s | w Word T P = G w s = 1 w
8 eqid Base G = Base G
9 eqid x Base G | dom x I Fin = x Base G | dom x I Fin
10 1 8 9 3 psgnfn N Fn x Base G | dom x I Fin
11 10 fndmi dom N = x Base G | dom x I Fin
12 1 8 11 2 3 psgnfval N = t dom N ι s | w Word T t = G w s = 1 w
13 iotaex ι s | w Word T P = G w s = 1 w V
14 7 12 13 fvmpt P dom N N P = ι s | w Word T P = G w s = 1 w