Metamath Proof Explorer


Theorem psgnvalfi

Description: Value of the permutation sign function for permutations of finite sets. (Contributed by AV, 13-Jan-2019)

Ref Expression
Hypotheses psgnfvalfi.g G = SymGrp D
psgnfvalfi.b B = Base G
psgnfvalfi.t T = ran pmTrsp D
psgnfvalfi.n N = pmSgn D
Assertion psgnvalfi D Fin P B N P = ι s | w Word T P = G w s = 1 w

Proof

Step Hyp Ref Expression
1 psgnfvalfi.g G = SymGrp D
2 psgnfvalfi.b B = Base G
3 psgnfvalfi.t T = ran pmTrsp D
4 psgnfvalfi.n N = pmSgn D
5 simpr D Fin P B P B
6 1 2 sygbasnfpfi D Fin P B dom P I Fin
7 1 4 2 psgneldm P dom N P B dom P I Fin
8 5 6 7 sylanbrc D Fin P B P dom N
9 1 3 4 psgnval P dom N N P = ι s | w Word T P = G w s = 1 w
10 8 9 syl D Fin P B N P = ι s | w Word T P = G w s = 1 w