Metamath Proof Explorer


Theorem psgnvalii

Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015)

Ref Expression
Hypotheses psgnval.g G = SymGrp D
psgnval.t T = ran pmTrsp D
psgnval.n N = pmSgn D
Assertion psgnvalii D V W Word T N G W = 1 W

Proof

Step Hyp Ref Expression
1 psgnval.g G = SymGrp D
2 psgnval.t T = ran pmTrsp D
3 psgnval.n N = pmSgn D
4 1 2 3 psgneldm2i D V W Word T G W dom N
5 1 2 3 psgnval G W dom N N G W = ι s | w Word T G W = G w s = 1 w
6 4 5 syl D V W Word T N G W = ι s | w Word T G W = G w s = 1 w
7 simpr D V W Word T W Word T
8 eqidd D V W Word T G W = G W
9 eqidd D V W Word T 1 W = 1 W
10 oveq2 w = W G w = G W
11 10 eqeq2d w = W G W = G w G W = G W
12 fveq2 w = W w = W
13 12 oveq2d w = W 1 w = 1 W
14 13 eqeq2d w = W 1 W = 1 w 1 W = 1 W
15 11 14 anbi12d w = W G W = G w 1 W = 1 w G W = G W 1 W = 1 W
16 15 rspcev W Word T G W = G W 1 W = 1 W w Word T G W = G w 1 W = 1 w
17 7 8 9 16 syl12anc D V W Word T w Word T G W = G w 1 W = 1 w
18 ovexd D V W Word T 1 W V
19 1 2 3 psgneu G W dom N ∃! s w Word T G W = G w s = 1 w
20 4 19 syl D V W Word T ∃! s w Word T G W = G w s = 1 w
21 eqeq1 s = 1 W s = 1 w 1 W = 1 w
22 21 anbi2d s = 1 W G W = G w s = 1 w G W = G w 1 W = 1 w
23 22 rexbidv s = 1 W w Word T G W = G w s = 1 w w Word T G W = G w 1 W = 1 w
24 23 adantl D V W Word T s = 1 W w Word T G W = G w s = 1 w w Word T G W = G w 1 W = 1 w
25 18 20 24 iota2d D V W Word T w Word T G W = G w 1 W = 1 w ι s | w Word T G W = G w s = 1 w = 1 W
26 17 25 mpbid D V W Word T ι s | w Word T G W = G w s = 1 w = 1 W
27 6 26 eqtrd D V W Word T N G W = 1 W