Metamath Proof Explorer


Theorem pslem

Description: Lemma for psref and others. (Contributed by NM, 12-May-2008) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion pslem R PosetRel A R B B R C A R C A R A R A A R B B R A A = B

Proof

Step Hyp Ref Expression
1 psrel R PosetRel Rel R
2 brrelex12 Rel R A R B A V B V
3 1 2 sylan R PosetRel A R B A V B V
4 brrelex2 Rel R B R C C V
5 1 4 sylan R PosetRel B R C C V
6 3 5 anim12dan R PosetRel A R B B R C A V B V C V
7 pstr2 R PosetRel R R R
8 cotr R R R x y z x R y y R z x R z
9 7 8 sylib R PosetRel x y z x R y y R z x R z
10 9 adantr R PosetRel A R B B R C x y z x R y y R z x R z
11 simpr R PosetRel A R B B R C A R B B R C
12 breq12 x = A y = B x R y A R B
13 12 3adant3 x = A y = B z = C x R y A R B
14 breq12 y = B z = C y R z B R C
15 14 3adant1 x = A y = B z = C y R z B R C
16 13 15 anbi12d x = A y = B z = C x R y y R z A R B B R C
17 breq12 x = A z = C x R z A R C
18 17 3adant2 x = A y = B z = C x R z A R C
19 16 18 imbi12d x = A y = B z = C x R y y R z x R z A R B B R C A R C
20 19 spc3gv A V B V C V x y z x R y y R z x R z A R B B R C A R C
21 20 3expa A V B V C V x y z x R y y R z x R z A R B B R C A R C
22 6 10 11 21 syl3c R PosetRel A R B B R C A R C
23 22 ex R PosetRel A R B B R C A R C
24 psref2 R PosetRel R R -1 = I R
25 asymref2 R R -1 = I R x R x R x x y x R y y R x x = y
26 25 simplbi R R -1 = I R x R x R x
27 breq12 x = A x = A x R x A R A
28 27 anidms x = A x R x A R A
29 28 rspccv x R x R x A R A R A
30 24 26 29 3syl R PosetRel A R A R A
31 3 adantrr R PosetRel A R B B R A A V B V
32 25 simprbi R R -1 = I R x y x R y y R x x = y
33 24 32 syl R PosetRel x y x R y y R x x = y
34 33 adantr R PosetRel A R B B R A x y x R y y R x x = y
35 simpr R PosetRel A R B B R A A R B B R A
36 breq12 y = B x = A y R x B R A
37 36 ancoms x = A y = B y R x B R A
38 12 37 anbi12d x = A y = B x R y y R x A R B B R A
39 eqeq12 x = A y = B x = y A = B
40 38 39 imbi12d x = A y = B x R y y R x x = y A R B B R A A = B
41 40 spc2gv A V B V x y x R y y R x x = y A R B B R A A = B
42 31 34 35 41 syl3c R PosetRel A R B B R A A = B
43 42 ex R PosetRel A R B B R A A = B
44 23 30 43 3jca R PosetRel A R B B R C A R C A R A R A A R B B R A A = B