Metamath Proof Explorer


Theorem psmet0

Description: The distance function of a pseudometric space is zero if its arguments are equal. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmet0 D PsMet X A X A D A = 0

Proof

Step Hyp Ref Expression
1 elfvex D PsMet X X V
2 ispsmet X V D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
3 1 2 syl D PsMet X D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
4 3 ibi D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
5 4 simprd D PsMet X a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
6 5 r19.21bi D PsMet X a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
7 6 simpld D PsMet X a X a D a = 0
8 7 ralrimiva D PsMet X a X a D a = 0
9 id a = A a = A
10 9 9 oveq12d a = A a D a = A D A
11 10 eqeq1d a = A a D a = 0 A D A = 0
12 11 rspcv A X a X a D a = 0 A D A = 0
13 8 12 mpan9 D PsMet X A X A D A = 0