Metamath Proof Explorer


Theorem psmetdmdm

Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmetdmdm D PsMet X X = dom dom D

Proof

Step Hyp Ref Expression
1 elfvex D PsMet X X V
2 ispsmet X V D PsMet X D : X × X * x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
3 2 biimpa X V D PsMet X D : X × X * x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
4 1 3 mpancom D PsMet X D : X × X * x X x D x = 0 y X z X x D y z D x + 𝑒 z D y
5 4 simpld D PsMet X D : X × X *
6 fdm D : X × X * dom D = X × X
7 6 dmeqd D : X × X * dom dom D = dom X × X
8 5 7 syl D PsMet X dom dom D = dom X × X
9 dmxpid dom X × X = X
10 8 9 eqtr2di D PsMet X X = dom dom D