Database
BASIC TOPOLOGY
Metric spaces
Pseudometric spaces
psmetdmdm
Next ⟩
psmetf
Metamath Proof Explorer
Ascii
Unicode
Theorem
psmetdmdm
Description:
Recover the base set from a pseudometric.
(Contributed by
Thierry Arnoux
, 7-Feb-2018)
Ref
Expression
Assertion
psmetdmdm
⊢
D
∈
PsMet
⁡
X
→
X
=
dom
⁡
dom
⁡
D
Proof
Step
Hyp
Ref
Expression
1
elfvex
⊢
D
∈
PsMet
⁡
X
→
X
∈
V
2
ispsmet
⊢
X
∈
V
→
D
∈
PsMet
⁡
X
↔
D
:
X
×
X
⟶
ℝ
*
∧
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
3
2
biimpa
⊢
X
∈
V
∧
D
∈
PsMet
⁡
X
→
D
:
X
×
X
⟶
ℝ
*
∧
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
4
1
3
mpancom
⊢
D
∈
PsMet
⁡
X
→
D
:
X
×
X
⟶
ℝ
*
∧
∀
x
∈
X
x
D
x
=
0
∧
∀
y
∈
X
∀
z
∈
X
x
D
y
≤
z
D
x
+
𝑒
z
D
y
5
4
simpld
⊢
D
∈
PsMet
⁡
X
→
D
:
X
×
X
⟶
ℝ
*
6
fdm
⊢
D
:
X
×
X
⟶
ℝ
*
→
dom
⁡
D
=
X
×
X
7
6
dmeqd
⊢
D
:
X
×
X
⟶
ℝ
*
→
dom
⁡
dom
⁡
D
=
dom
⁡
X
×
X
8
5
7
syl
⊢
D
∈
PsMet
⁡
X
→
dom
⁡
dom
⁡
D
=
dom
⁡
X
×
X
9
dmxpid
⊢
dom
⁡
X
×
X
=
X
10
8
9
eqtr2di
⊢
D
∈
PsMet
⁡
X
→
X
=
dom
⁡
dom
⁡
D