Metamath Proof Explorer


Theorem psmetf

Description: The distance function of a pseudometric as a function. (Contributed by Thierry Arnoux, 7-Feb-2018)

Ref Expression
Assertion psmetf D PsMet X D : X × X *

Proof

Step Hyp Ref Expression
1 elfvex D PsMet X X V
2 ispsmet X V D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
3 1 2 syl D PsMet X D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
4 3 ibi D PsMet X D : X × X * a X a D a = 0 b X c X a D b c D a + 𝑒 c D b
5 4 simpld D PsMet X D : X × X *