Metamath Proof Explorer


Theorem psmettri

Description: Triangle inequality for the distance function of a pseudometric space. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion psmettri D PsMet X A X B X C X A D B A D C + 𝑒 C D B

Proof

Step Hyp Ref Expression
1 simpl D PsMet X A X B X C X D PsMet X
2 simpr3 D PsMet X A X B X C X C X
3 simpr1 D PsMet X A X B X C X A X
4 simpr2 D PsMet X A X B X C X B X
5 psmettri2 D PsMet X C X A X B X A D B C D A + 𝑒 C D B
6 1 2 3 4 5 syl13anc D PsMet X A X B X C X A D B C D A + 𝑒 C D B
7 psmetsym D PsMet X C X A X C D A = A D C
8 1 2 3 7 syl3anc D PsMet X A X B X C X C D A = A D C
9 8 oveq1d D PsMet X A X B X C X C D A + 𝑒 C D B = A D C + 𝑒 C D B
10 6 9 breqtrd D PsMet X A X B X C X A D B A D C + 𝑒 C D B