Metamath Proof Explorer


Theorem psmetxrge0

Description: The distance function of a pseudometric space is a function into the nonnegative extended real numbers. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Assertion psmetxrge0 D PsMet X D : X × X 0 +∞

Proof

Step Hyp Ref Expression
1 psmetf D PsMet X D : X × X *
2 1 ffnd D PsMet X D Fn X × X
3 1 ffvelrnda D PsMet X a X × X D a *
4 elxp6 a X × X a = 1 st a 2 nd a 1 st a X 2 nd a X
5 4 simprbi a X × X 1 st a X 2 nd a X
6 psmetge0 D PsMet X 1 st a X 2 nd a X 0 1 st a D 2 nd a
7 6 3expb D PsMet X 1 st a X 2 nd a X 0 1 st a D 2 nd a
8 5 7 sylan2 D PsMet X a X × X 0 1 st a D 2 nd a
9 1st2nd2 a X × X a = 1 st a 2 nd a
10 9 fveq2d a X × X D a = D 1 st a 2 nd a
11 df-ov 1 st a D 2 nd a = D 1 st a 2 nd a
12 10 11 eqtr4di a X × X D a = 1 st a D 2 nd a
13 12 adantl D PsMet X a X × X D a = 1 st a D 2 nd a
14 8 13 breqtrrd D PsMet X a X × X 0 D a
15 elxrge0 D a 0 +∞ D a * 0 D a
16 3 14 15 sylanbrc D PsMet X a X × X D a 0 +∞
17 16 ralrimiva D PsMet X a X × X D a 0 +∞
18 fnfvrnss D Fn X × X a X × X D a 0 +∞ ran D 0 +∞
19 2 17 18 syl2anc D PsMet X ran D 0 +∞
20 df-f D : X × X 0 +∞ D Fn X × X ran D 0 +∞
21 2 19 20 sylanbrc D PsMet X D : X × X 0 +∞